
Programming Fundamentals 2

Pierre Talbot

27 May 2021

University of Luxembourg

Chapter 0. Getting Started

0

What is it?

This class will be about programming in Java.

Some aspects of this class are experimental.

• No distinction between lectures and labs.

• Intensive first half: 70% of your grade in 2 months.

• Feedback on what you produce (quick grading, code review, ...).

• Standard and competitive tracks.

Don’t hesitate to help us to improve this class!

1

Organization

FULL REMOTE: Every Tuesday and Thursday, 8:00 to 9:30.

There is no difference between lectures and labs!

Class layout:

1. Chapters: The core notions of Java are divided into 15 chapters.

2. Live coding: You watch me coding something.

3. Code analysis: We look at your projects and review them.

4. Crafting: Learn how to use your tools!

Ezhilmathi Krishnasamy (aka. Mathi) is the TA of this class, he will take

a good look at your code and discuss it during code analysis session.

2

Planning

Two tracks: standard track and competitive track.

Standard track

• 16/02–15/04: 4 labs, 1 every two weeks (40% of your grade).

• 15/04 (14:00–17:00): Exam (30% of your grade).

• 15/04–16/05 (labs 5 and 6): You will fight in the A.I. Arena (30%

of your grade).

• Beware: coding exam plus oral exam for redoing students (100%).

3

Labs

Three parts: basic exercises + main topic + competitive exercises.

• Lab 1: Connect Four

• Lab 2: Pokedeck

• Lab 3: Banking system

• Lab 4: Musical Improvisation

4

A.I. Arena

The remaining 30% will be gained by designing an artificial intelligence

for a simplified version of a MOBA-like game.

You’ll compete against each other for the throne!

5

Competitive track

• Track unlocked after you complete the standard track.

• Selected competitive exercices.

• You collect additional points.

• Special events: Hash code, Google Code Jam, ... (bonus points).

Competitive team

If you are interested, we can set up a team for ACM-ICPC in 1 or 2

years (need more or less preparation depending on your goal).

6

Competitive track

Coding competitions are very fun, and you learn a lot of new algorithms!

7

Competitive track planning

• 16th February → 15th April: Some UVa problems for each lab.

• Team Event 1: Hash Code: 25th February, 18:30

https://hashcodejudge.withgoogle.com

• Event 2: Google Code Jam Qualification: 26th March, 23:00 to

28th March, 01:00

https://codingcompetitions.withgoogle.com/codejam

• Event 3: Google Code Jam Round 1A: 10th April, 02:00–04:30

• Event 4: Google Code Jam Round 1B: 25th April, 17:00–19:30

• Event 5: Google Code Jam Round 1C: 1st May, 10:00–12:30

• Event 6: Google Code Jam Round 2: 15th May, 15:00–17:30

Those interested in the competitive track must register here (you can join anytime):

https://docs.google.com/spreadsheets/d/

1KMZx58SoE08g-l4usphtaLFnPhKzBDhTpa9PgixOok8/edit?usp=sharing.

8

https://hashcodejudge.withgoogle.com
https://codingcompetitions.withgoogle.com/codejam
https://docs.google.com/spreadsheets/d/1KMZx58SoE08g-l4usphtaLFnPhKzBDhTpa9PgixOok8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1KMZx58SoE08g-l4usphtaLFnPhKzBDhTpa9PgixOok8/edit?usp=sharing

What will you gain?

• Improve your programming craft, and code beautifully.

• Learn the basics of Java.

• Learn the basics of object-oriented programming.

• Feel more confident in the code you write.

• Develop your first 500-1K LOC programs.

9

Your coder toolbox

As a future professional software programmer, you need a decent (virtual)

equipment! Here a list of what you need (for this class):

• Shell: Linux-compatible bash shell (aka. console or terminal)

• Editor: Sublime Text (https://www.sublimetext.com/3)

• Java compiler/runtime: java and javac commands

Get Open Java Development Kit (Open JDK) (https://www.

oracle.com/java/technologies/javase-downloads.html)

• Source code control: Git with git command.

Also Github (https://github.com) as a collaboration platform

built on top of git.

• Build automation tool: Maven with mvn command.

• Communication: Discord app.

No IDE for now. You must use Sublime text. IDEs are quite complicated

and you don’t know what’s going on. We’ll use one later.

10

https://www.sublimetext.com/3
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://github.com

Getting started

Depending on your system, the ways to install the tools are a bit different.

Please, follow these videos according to your operating system (password:

Programm1ng):

• Linux (Ubuntu):

https://unilu.webex.com/unilu/ldr.php?RCID=63896a9159d2a523118c1f724251cd0f

• Mac OSX:

https://unilu.webex.com/unilu/ldr.php?RCID=8caf3ec8a59b40fd5721e74142c27e5c

• Windows:

https://unilu.webex.com/unilu/ldr.php?RCID=5e77758fb1d61a90dca84802062d5fd0

Try out as soon as possible Exercise 1 of Lab 1.

You CANNOT stay stuck at this stage.

Ask on Discord for any problem.

11

https://unilu.webex.com/unilu/ldr.php?RCID=63896a9159d2a523118c1f724251cd0f
https://unilu.webex.com/unilu/ldr.php?RCID=8caf3ec8a59b40fd5721e74142c27e5c
https://unilu.webex.com/unilu/ldr.php?RCID=5e77758fb1d61a90dca84802062d5fd0

Getting help

Google to search for information (e.g., Java docs, Stackoverflow, . . .).

Discord (https://discord.gg/SqarkmNQHe) will be the privileged

communication tool for questions.

Answer the questions of your peers, Mathi and I will answer too.

Here the different channels:

• #tools: for any installation trouble, e.g., you can’t run a Java program, and questions

relevant to tooling.

• #code: all questions relevant to the code (from labs or classes).

• #competition: for the competitive track (UVa problems) and events (Google Hash Code,

Code Jam).

By mail if your question is personal: pierre.talbot@uni.lu.

Do everything you can to find answers to your questions.

12

https://discord.gg/SqarkmNQHe

Resources

• The Small Programming Handbook: Cheat sheets on git, shell,

Java pitfalls, Java conventions,... Updated regularly on

https://www.overleaf.com/read/tqxpqfwbbccc

• Slides and recorded lectures, live coding and code analysis sessions.

• Tutorial on various topics inside the labs.

13

https://www.overleaf.com/read/tqxpqfwbbccc

References

General Programming

• Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin

• Agile Software Development, Principles, Patterns, and Practices, Robert C.

Martin

• Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma,

Richard Helm, Ralph Johnson, John Vlissides

• The Mythical Man-Month: Essays on Software Engineering, Frederick Brooks

Java

• Effective Java 3rd Edition, Joshua Bloch

• Core Java Volume I - Fundamentals, Eleventh Edition, Cay S. Horstmann

14

Chapter I. Basics of Java Syntax

14

Syntax vs Semantics

• The syntax of a programming language defines the set of symbols

allowed in the program, and its structure.

• The semantics of a programming language gives meaning to the

sentences.

Examples

• Syntactically incorrect: “The eert is high” (unknown symbol “eert”).

• Syntactically incorrect: “The tree is is high” (bad structure:

repetition of “is”).

• Syntactically correct but semantically incorrect: “The tree is reading

a glass of water”.

15

Syntax vs Semantics

It is similar with computer programs.

Examples

• Syntactically incorrect: tni i = 1; (unknown symbol “tni”).

• Syntactically incorrect: int i 1 (missing equility symbol).

• Syntactically correct but semantically incorrect: int i = "a";

(expected type int, got String).

• Syntactically correct but semantically incorrect: int i = 1; int i

= 2; (i redeclared).

The differences will be made precise in the class Programming Languages

(BAINFOR-53).

16

Java Syntax

A language is a mix of various syntactic components such as:

• Statements

• Expressions

• Types

• Literals

When learning a language, we often look at examples, but this is not a

formal nor complete specification of a language.

Therefore, we need a formalism to describe syntax: context-free grammar.

The syntax and informal semantics of Java is described in the Java SE specification:

https://docs.oracle.com/javase/specs/jls/se15/html/index.html

17

https://docs.oracle.com/javase/specs/jls/se15/html/index.html

Statements (§14)

A statement is a construct that produces side-effect (e.g., it modifies

the value of a variable, prints on the screen, ...).
Statement:

Block

LocalVariableDeclarationStatement int x = 1;

Integer o = new Integer(3);

Assignment x = 3;

IfThenStatement

IfThenElseStatement

WhileStatement

ForStatement

ClassDeclaration

Block:

{ [Statement] } int x = 1; x = x + 1;

IfThenStatement:

if (Expression) Statement if(x < 4) x = 2;

IfThenElseStatement:

if (Expression) Statement else Statement

WhileStatement:

while (Expression) Statement

ForStatement:

for ([ForInit] ; [Expression] ; [ForUpdate]) Statement for(int i = 0; i < n; i++) {
System.out.println(i);

}
ClassDeclaration:

{ClassModifier} class TypeIdentifier [TypeParameters] [Superclass] [Superinterfaces] ClassBody

public class Rectangle {
private int width;

private int height;

...

} 18

Dangling else problem

Unlike Python, indentation is not mandatory in Java (that being said, you should

indent as in Python).

This can lead to some problems with if-else statements (in C and C++ as well):

if (x > 0)

if (y < 0)

y = 2;

else

x = 1;

The last else statement actually belong to the innermost if, here if(y < 0).

To avoid ambiguity, always use curly braces:

if (x > 0) {

if (y < 0) {

y = 2;

}

}

else {

x = 1;

}

19

Expression (§15)

An expression is a code that evaluates to a value.

• Variable name: i, x, average.

• Array access: arr[i], matrix[i][j].

• Arithmetic expression: 7 + 8, x / 8 + 2 * 4.

• Function call: fibonacci(8).

• ...

Basically, if you can write x = E;, then E is an expression.

We will complete this list as we progress.

20

Types (§4)

Java is a statically typed language: a variable x has an explicit and

single type during the execution of the program.

Type:

PrimitiveType

ReferenceType

PrimitiveType:

(one of)

boolean float double byte short int long char

ReferenceType:

(see §4.3) String, java.util.Scanner, ArrayList<Integer>

21

Arrays (§10)

1D array:

int n = 10;

int[] grades = new int[n]; // Create an array of size ‘n‘, all elements are

initialized to 0.

// ... Populate the array with grades (not shown)

int sum = 0;

// grades.length is an attribute of array giving the size of the array (here equals

to ‘n‘).

for(int i = 0; i < grades.length; ++i) {

sum += grades[i];

}

System.out.println("The average of the student is "

+ (sum / grades.length));

2D array:

int n = 10;

int m = 29;

int[][] matrix = new int[n][m]; // Create a 2D array of size ‘n * m‘, all

elements are initialized to 0.

matrix[2][0] = 10; // Initialize the elements at coordinate (2,0) to 10. 22

Literals (§3.10)

Literals are the possible ground values in the language:

Literal:

IntegerLiteral 2, 0, -1

FloatingPointLiteral 1.1, 1.1f, 2., 2.9e-3

BooleanLiteral true, false

CharacterLiteral ’a’ ’\u0370’
StringLiteral "hello"

TextBlock """ a very long multi-line string"""

NullLiteral null

The set of literals is different according to the language, e.g., in Python

you have a literal for complex number (3.14j).

23

Unicode

Unicode is a standard to represent characters in a unified way.

www.youtube.com/watch?v=-n2nlPHEMG8

• Characters from more than 200 languages, but also emojis, are

represented by a unique code point.

• For instance, a has the code point U+0061, and
∑

has U+2211.

• Code point can be encoded as:

1. UTF-8: smaller string size, but linear array access (e.g., no s[10]),

because a character can occupies 1, 2, 3 or 4 bytes.

2. UTF-16: 2 bytes per character, but constant array access.

• The Java String class uses UTF-16. You can write code points as

"\u1F602", which are automatically transformed into UTF-16.

Reading of the week: https://www.joelonsoftware.com/2003/10/08/

the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

24

www.youtube.com/watch?v=-n2nlPHEMG8
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Floating-point numbers

The floating-point number 1.1 does not exist

But, sir, System.out.println(1.1f) is printing 1.1! Well, kid, it’s a

lie! With enough precision System.out.printf("%.10f", 1.1f);

will print 1.1000000238.

Floating-point number are not exact!

Give you a treat, read this paper before you graduate:

What Every Computer Scientist Should Know About Floating-Point

Arithmetic, David Goldberg, 1991

http://pages.cs.wisc.edu/~david/courses/cs552/S12/handouts/goldberg-floating-point.pdf

25

http://pages.cs.wisc.edu/~david/courses/cs552/S12/handouts/goldberg-floating-point.pdf

The (almost) smallest Java program

In order to execute some Java code, you absolutely need a main function.

It indicates where the program actually starts.

public class Chess {

public static void main(String[] args) {

System.out.println("Welcome to my Chess program");

}

}

The file must have the same name as the class, here Chess.java.

26

Input/Output in 2 minutes

import java.util.Scanner;

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("What’s your name? ");

String name = scanner.nextLine();

System.out.print("What’s your age? ");

int age = scanner.nextInt();

System.out.println("Welcome " + name + " (" + age

+ "years’ old)");

scanner.close();

}

}

We concatenate String with the operator +.

It works with literals and variables with primitive types as well.

27

Summary

We took a glimpse to some basic Java constructs.

You need nothing more to start coding your first Java programs :-)

Homework

• Laboratory 1, already available on Moodle.

• Reading of the week: https://www.joelonsoftware.com/2003/10/08/

the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

• Coding event (optional)

1. Register Google Hash Code (hashcodejudge.withgoogle.com).

2. Give me the name of your team here:

https://docs.google.com/spreadsheets/d/

1zSi6PG32kPGu5Kxhye19vsD7fqb2kqYVIntkh6Xd9fc/edit?usp=

sharing

28

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
hashcodejudge.withgoogle.com
https://docs.google.com/spreadsheets/d/1zSi6PG32kPGu5Kxhye19vsD7fqb2kqYVIntkh6Xd9fc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1zSi6PG32kPGu5Kxhye19vsD7fqb2kqYVIntkh6Xd9fc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1zSi6PG32kPGu5Kxhye19vsD7fqb2kqYVIntkh6Xd9fc/edit?usp=sharing

Chapter II. Imperative Programming

A bottom-up approach

28

Types and Memory

28

Untyped memory

The computer memory is just a big chunk of cells each containing either

0 or 1:

0 1 0 0 0 0 1 0

That is, the set {0, 1}n where n is the size of your memory in bits. We say

the memory is untyped since it contains only one sort of type ({0, 1}n).

29

Byte-addressable

Generally, the memory is divided into chunks of 8 bits, called bytes.

Each byte has an address (usually written in hexadecimal form):

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0x22 0x23 0x24

In a program, we read and write in the memory through variables and

statements. But what is a variable really?

30

Mathematically speaking...

A programming variable can be seen as a predicate of the form x ∈ T

where x is its name and T is its type.

Type

A type is the set of values that a variable can take.

• int is the set {−231, . . . , 0, . . . , 231 − 1},
• float is the set {. . . ,−1.5, . . . ,−0,+0, . . . , 1.125, . . . , NaN}

(precisely defined by the IEEE 740 standard),

• char is the set {. . . , a, b, . . . ,
∑
, γ, . . .},

(precisely defined by the Unicode standard),

• boolean is the set {true, false}.

By int x, we mean x ∈ int.

By char c we mean c ∈ char.

31

Operationally speaking...

A programming variable is an address in memory (abstracted by a

symbolic name) and a type.

A type is a size s ∈ N in bits and a pair of imaginary functions

f : {0, 1}s → T and g : T → {0, 1}s , such that T is the values you

manipulate in the program.

Examples

• For int: size = 32 bits, fint(02401000001) = 64,

• For float: size = 32 bits, ffloat(02401000001) = 9.108 . . .−44,

• For char: size = 16 bits, fchar (0801000001) = A,

• For boolean: size = 1 bit, fboolean(1) = true.

More low-level details on memory representation and f in Computing

Infrastructure 1 (e.g. two-complement representation).

32

Static vs Dynamic Type

We say a programming language is statically typed, if each variable has a

single type that can be figured out at compile-time. In contrast, it is

dynamically typed if you can do something like x = 4; x =

"yo!";—the type of x changes during the execution.

In Java, you must explicitly state the type of a variable when declaring it,

and it cannot change later.

33

Drawing the memory

To simplify our drawings, we will view a cell in the memory as the

content of a primitive variable (instead of a cell being just a bit).

int x = 19;

char c = ’Y’;

will be represented as:

19 ’Y’

0x22 0x26 0x28

int x char c

When not needed, we might not write the addresses and types explicitly.

34

Function and Evaluation Strategy

34

Previously...

import java.util.Scanner;

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("What’s your name? ");

String name = scanner.nextLine();

System.out.print("What’s your age? ");

int age = scanner.nextInt();

System.out.println("Welcome " + name + " (" + age

+ "years’ old)");

scanner.close();

}

}

How to do if we want to get the information of a second person?

35

Copy-paste programming

You shouldn’t do:

import java.util.Scanner;

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

int age1 = ...

String name1 = ...

int age2 = ...

String name2 = ...

scanner.close();

}

}

because you would have two times the same code!

(It is bad because if you fix a bug in the first part, you might forget to fix the copied/pasted

second part.)

36

Using functions?

import java.util.Scanner;

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

int age1, age2;

String name1, name2;

askPerson(scanner, name1, age1);

askPerson(scanner, name2, age2);

scanner.close();

}

static void askPerson(Scanner scanner, String name, int age) {

System.out.print("What’s your name? ");

name = scanner.nextLine();

System.out.print("What’s your age? ");

age = scanner.nextInt();

System.out.println("Welcome " + name + " (" + age

+ "years’ old)");

}

}

37

Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0
0x22

age

38

Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0 0
0x22 0x26

age age

39

Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0 12
0x22 0x26

age age

40

Call-by-value evaluation strategy

What happens when you pass an argument to a function?

public static void main(String[] args) {

int age = 0;

askAge(age);

System.out.println("Age: " + age);

}

static void askAge(int age) {

age = 12;

}

0
0x22 0x26

age

41

Call-by-value evaluation strategy

What happens when you pass an argument to a function?

The value is copied in a new cell (the parameter) when passed as an

argument! This is called call-by-value evaluation strategy. The fact that

both cells have the same symbolic name does not mean they are equal!

How to do then??

42

Call-by-value evaluation strategy

For a single value (like age) you can write:

public static void main(String[] args) {

int age = askAge();

System.out.println("Age: " + age);

}

static int askAge() {

return 12;

}

However, for multiple values (e.g., the age and name), we need to group

the data in a common structure.

43

Tuple Type

43

Tuple

The simplest way to group values is with the tuple type.

In Python, you could implement askPerson with:

def askPerson():

print("What is your age?")

age = input()

print("What is your name?")

name = input()

return (age, name)

(age, name) = askPerson()

print(name + ", next year you’ll be " + (age + 1))

However, since the types are dynamic, the tuple has the type string * string, thus

age + 1 will fail at runtime.

In a statically typed language, such as OCaml, you create a tuple with:

let askPerson(): string * int = ("Albert", 12)

let person = askPerson()

let next_year_age = person.0 + 1

(∗ ˆ Ooops compile−time error: we try to add Albert and 1... ∗)

44

Tuple

Mathematically speaking...

The tuple is exactly the Cartesian product T1 × T2 between two (or

more) types T1 and T2.

• int× boolean = {(0, true), (0, false), (1, true), . . .},
• (0, true) ∈ int× boolean,

• (13, false) ∈ int× boolean,

• (”Albert”, 13) ∈ String× int

The field of a tuple is accessed with a projection t.i where i ∈ N, e.g.,

person.0, person.1, and (0, true).1 = true.

Oh BTW, in Java, there is no tuple type.

45

Record Type

45

Record

The record type is a simple extension to the tuple type which explicitly names the

fields of the tuple. This is one of the most common constructions to group values in

programming languages.

In C, you write:

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

printf("Hello %s\n", p.name);

}

"Albert" 14

0x22 0x86

p.name p.age

Mathematically, it remains a Cartesian product where the order of the components

does not matter anymore.

46

Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s", p.name);

p.age = p.age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

47

Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s", p.name);

p.age = p.age + 1;

}

"Albert" 14 "Albert" 14
0x22 0x86 0x8A 0xEE

p.name p.age p.name p.age

48

Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s\n", p.name);

p.age = p.age + 1;

}

"Albert" 14 "Albert" 15
0x22 0x86 0x8A 0xEE

p.name p.age p.name p.age

49

Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old\n", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s\n", p.name);

p.age = p.age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

In C, a record is passed by value similarly to primitive types.

So how can we implement birthday?

50

Records as function parameters

What happens when you pass a record to a function?

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(p);

printf("%s is %d years’ old\n", p.name, p.age);

}

void birthday(Person p) {

printf("Happy birthday %s\n", p.name);

p.age = p.age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

In C, a record is passed by value similarly to primitive types.

So how can we implement birthday?

50

Pointer Type

50

Pointer

We can copy the address of the value p, instead of copying the structure

itself!

This is done through two important operators:

• The address-of operator &x returns the address of a variable x ,

e.g., &p equals 0x22.

• The dereference operator *x interprets the content of x as an

address and returns the value at this address.

• Property: *(&x) = x.

Variables that contains addresses are called pointer.

51

One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 14
0x22 0x86

p.name p.age

52

One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 14 0x22
0x22 0x86 0x8A

p.name p.age p

53

One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s\n", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 15 0x22
0x22 0x86 0x8A

p.name p.age p

54

One nice trick: passing the address

struct Person {

char name[100];

int age;

};

int main() {

Person p = {"Albert", 14};

birthday(&p);

printf("%s is %d years’ old\n", p.name, p.age);

}

void birthday(Person* p) {

printf("Happy birthday %s\n", (*p).name);

(*p).age = (*p).age + 1;

}

"Albert" 15
0x22 0x86

p.name p.age

55

Java does not have mutable record type or explicit

pointer.

However, Java has:

• Implicit pointer called reference.

• An extension of the record type called object.

• Immutable record (new in Java 16, not covered here).

56

Reference Type

56

A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null

0x22

p

57

A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null null

0x22 0x26

p p

58

A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

null 0

0x100 0x104

name age

59

A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

null 0

0x100 0x104

name age

"Albert"

0x200

60

A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

0x200 0

0x100 0x104

name age

"Albert"

0x200

61

A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

null 0x100

0x22 0x26

p p

0x200 20

0x100 0x104

name age

"Albert"

0x200

62

A first glimpse to objects (as records)

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

scanner.close();

}

static Person askPerson(Scanner scanner) {

Person p = new Person();

System.out.print("What’s your name? ");

p.name = scanner.nextLine();

System.out.print("What’s your age? ");

p.age = scanner.nextInt();

scanner.nextLine();

System.out.println("Welcome " + p.name + " (" + p.age

+ " years’ old)");

return p;

}

}

0x100

0x22 0x26

p

0x200 20

0x100 0x104

name age

"Albert"

0x200

63

Passing Object to Function

63

Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100

0x22

p

0x200 20

0x100 0x104

name age

"Albert"

0x200

64

Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100 0x100

0x22 0x26

p p

0x200 20

0x100 0x104

name age

"Albert"

0x200

65

Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100 0x100

0x22 0x26

p p

0x200 21

0x100 0x104

name age

"Albert"

0x200

66

Passing reference by value

class Person {

public String name;

public int age;

}

public class HelloWorld {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

Person p = askPerson(scanner);

birthday(p);

scanner.close();

}

static Person askPerson(Scanner scanner) {

...

}

static void birthday(Person p) {

System.out.println("Happy birthday " + p.name);

p.age = p.age + 1;

}

}

0x100

0x22 0x26

p

0x200 21

0x100 0x104

name age

"Albert"

0x200

67

Summary on references

• The operator new Person():

1. Allocates a memory block and returns its address.

2. Initializes the content by calling the constructor by default.

• null is the value put inside the memory cell of an uninitialized

object, for instance: Person p;

• When passed by argument or returned, only the address of the

object is copied, not its content.

In comparison to C...

• Pointers are abstracted: we do not need the operators &x or *x.

• Memory is allocated with new, but automatically freed by the

garbage collector.

68

The Concert App

68

The Concert App

We write an app to manage the planning of concerts in imperative Java.

This is how you would write such an app in a language such as C, thus

you should not imitate this style using Java. Our goal is to compare

the imperative/procedural style with the object-oriented style presented

in the next chapter.

We use two records:

• A record Concert

• A record ConcertPlanning

69

// Invariant: startTime < endTime

public class Concert {

public int startTime;

public int endTime;

public static Concert makeConcert(int startTime, int endTime) {

assert startTime < endTime;

Concert c = new Concert();

c.startTime = startTime;

c.endTime = endTime;

}

public static int duration(Concert concert) {

return concert.endTime - concert.startTime;

}

}

• Defensive programming : we add an assert in makeConcert to

enforce the invariant.

• Functions are annotated with static and can be written inside the

class, they are called static methods.

70

public class ConcertPlanning {

public Concert[] concerts;

public static ConcertPlanning makeConcertPlanning() { ... }

public static void addConcert(Concert c) { ... }

public static int totalTimeConcert(ConcertPlanning planning) {

int total_time = 0;

for(int i = 0; i < planning.concerts.length; ++i) {

total_time += total_time(planning.concerts[i]);

}

return total_time;

}

}

71

public class ConcertApp {

public static void main(String[] args) {

Concert c1 = Concert.makeConcert(18, 19);

Concert c2 = Concert.makeConcert(20, 22);

ConcertPlanning planning = ConcertPlanning.makeConcertPlanning();

ConcertPlanning.addConcert(planning, c1);

ConcertPlanning.addConcert(planning, c2);

System.out.println("Total duration of the concerts: " +

ConcertPlanning.totalTimeConcert(planning));

}

}

We call static methods with the name of the class followed by the name

of the function: Class.method (e.g., Concert.makeConcert).

72

Chapter III. Object-Oriented Programming

72

Object type

Object = record + functions.

The functions are bundled together with the record, in a same structure.

In this context:

• the fields of the record are called attributes.

• the functions are called methods.

73

Characteristics of object-oriented programming

We can find 5 main characteristics of the object-oriented paradigm1:

• Encapsulation: attributes are not accessible from outside of the object.

• Inheritance (§4): An object I reuses the implementation of the methods

of an object J, through class and subclassing.

• Subtyping (§6): If an object I contains, at least, all the attributes and

method of J, then we can pass I as argument everywhere J is expected.

• Multiple representations (§8): a same set of methods (an interface) can

be implemented by two different objects.

• Open recursion: A method on I can invokes any another method on the

current object I .

1Types and Programming Languages, Benjamin C. Pierce.

74

Encapsulation

74

Concert app: from records to objects

Imagine that a newcomer in your team is asked to implement a function

to cancel concerts:

public class ConcertPlanning {

// ...

// Start and end time of cancelled concerts are set to 0 and -1.

public static void cancelConcert(ConcertPlanning planning, int concertIndex) {

planning.concerts[concertIndex].startTime = 0;

planning.concerts[concertIndex].endTime = -1;

}

}

In this case, he decides that the time interval [0..-1] represents empty

(cancelled) concert.

What could be the problem with this code?

75

The problem

The invariant startTime < endTime of the record Concert is violated.

When computing totalTimeConcert, the total time will not be correct

since the duration of each cancelled concert will be −1− 0 = −1.

The problem is that anybody can access and modify the attributes of

Concert. Imagine in large projects (hundreds of files): it is almost

impossible to enforce the invariants everywhere, and bugs are easily

introduced.

76

The solution: Encapsulation

A trait of object, namely encapsulation, helps in solving this problem.

The previous code can be rewritten:

public class Concert {

private int startTime;

private int endTime;

// ...

}

We set the attributes to private, we forbid any function external to this

object to read or modify them. Any change to these attributes are

located in the file Concert.java, so it is easier to enforce invariants.

public class ConcertPlanning {

public static void cancelConcert(ConcertPlanning planning, int concertIndex) {

// Won’t work anymore! The assert will be triggered.

planning.concerts[concertIndex] = Concert.makeConcert(0, -1);

}

}

77

A paradigm shift

Due to encapsulation, there is a shift from data-centric programming to

behavior-based programming:

• We do not reason on data anymore: these are hidden in classes that

we cannot necessarily modify or even look at!

• We are only interested by the services a class can give us.

• These services are the methods of the class annotated with public.

78

Imperative / Procedural

public class Concert {

public int startTime;

public int endTime;

public static Concert makeConcert(int startTime, int endTime)

{

assert startTime < endTime;

Concert c = new Concert();

c.startTime = startTime;

c.endTime = endTime;

}

public static int duration(Concert concert) {

return concert.endTime - concert.startTime;

}

}

Object-oriented

public class Concert {

private int startTime;

private int endTime;

public Concert(int startTime, int endTime)

{

assert startTime < endTime;

this.startTime = startTime;

this.endTime = endTime;

}

public int duration() {

return this.endTime - this.startTime;

}

}

From records to objects

• makeConcert becomes the constructor Concert (must have the

same name as the class!).

• Static methods become method (removes the static qualifier).

• The argument Concert concert passed to static methods, is now

referred as this and is passed implicitly to the methods.

79

Using objects

Imperative / Procedural

public class ConcertApp {

public static void main(String[] args) {

Concert c1 = Concert.makeConcert(18, 19);

Concert c2 = Concert.makeConcert(20, 22);

ConcertPlanning planning =

ConcertPlanning.makeConcertPlanning();

ConcertPlanning.addConcert(planning, c1);

ConcertPlanning.addConcert(planning, c2);

System.out.println("Total duration of the concerts: " +

ConcertPlanning.totalTimeConcert(planning));

}

}

Object-oriented

public class ConcertApp {

public static void main(String[] args) {

Concert c1 = new Concert(18, 19);

Concert c2 = new Concert(20, 22);

ConcertPlanning planning =

new ConcertPlanning();

planning.addConcert(c1);

planning.addConcert(c2);

System.out.println("Total duration of the concerts: " +

planning.totalTimeConcert());

}

}

From records to objects

• The constructor is called with new Concert(18, 19).

• new Concert() actually calls the constructor by default. It

initializes the attributes to some default values (0 for integers, null

for objects, ...).

80

Summary of objects

public class Concert {

private int startTime;

private int endTime;

public Concert(int startTime, int endTime) {

assert startTime < endTime;

this.startTime = startTime;

this.endTime = endTime;

}

public int duration() {

return this.endTime - this.startTime;

}

}

public class ConcertApp {

public static void main(String[] args) {

Concert c1 = new Concert(1, 2);

Concert c2 = new Concert(3, 4);

System.out.println("Duration c1: " + c1.duration());

System.out.println("Duration c2: " + c2.duration());

}

}

Attributes of the class

Constructor

Methods of the class

Constructor calls

Method calls

81

Vocabulary: Class vs Instance vs Object

• A class is a “blueprint”, a description of something,

e.g., the plan of a house.

• An object is the concrete realization of a class,

e.g., a house with a customized colour.

• An instance is a relationship between object and class,

e.g., the object new Band("Daft Punk") is an instance of the class

Band.

82

A note on encapsulation

Encapsulation is not proper to the object-oriented paradigm. It exists in

other paradigms, such as functional programming which often relies on

modules to enforce encapsulation.

Moreover, some (non-mainstream) object-oriented languages do not

enforce encapsulation (e.g., CLOS).

83

Static methods and attributes

83

Static methods

Functions that do not compute on an object in particular.

public class Math {

public static int max(int a, int b) {

return a > b ? a : b;

}

}

Consequently, in static methods, this is not passed as an argument to

the function, thus you do not have access to the class attributes.

Advice

For now, you should stay away from static methods. They encourage an

imperative/procedural style, instead of object-oriented style (see the

examples above).

84

Static attributes

You can annotate an attribute with the keyword static. It creates a

variable that is shared and global to all objects of this class.

We present two main use cases for static attributes:

1. Create unique identifiers.

2. Declare constant values.

85

Use case 1: unique identifier (UID)

Consider the following class:

public class Laptop {

int product_uid;

int ram;

int hard_drive_memory;

// ...

}

The attribute product_uid should be unique, each laptop should have a

different one. How to ensure that?

86

Use case 1: unique identifier

Add a static attribute to count the number of objects created.

public class Laptop {

static int uids = 0;

int product_uid;

int ram;

int hard_drive_memory;

// ...

public Laptop() {

product_uid = uids;

uids = uids + 1;

//...

}

}

Each time we will construct an object with new Laptop(), the static

variable uids will be incremented, so the next invocation of the

constructor will initialize product_uid to a different UID.

87

Use case 1: unique identifier

public class Laptop {

static int uids = 0;

int product_uid;

int ram;

public Laptop(int ram) {

this.product_uid = uids;

this.ram = ram;

uids = uids + 1;

}

}

public class LaptopCreator {

public static void main(String[] args) {

Laptop l1 = new Laptop(500);

Laptop l2 = new Laptop(1000);

}

}

0
0x10

uids

88

Use case 1: unique identifier

public class Laptop {

static int uids = 0;

int product_uid;

int ram;

public Laptop(int ram) {

this.product_uid = uids;

this.ram = ram;

uids = uids + 1;

}

}

public class LaptopCreator {

public static void main(String[] args) {

Laptop l1 = new Laptop(500);

Laptop l2 = new Laptop(1000);

}

}

1
0x10

uids

0x100 0x200

0x22 0x26

l1 l2

0 500
0x100 0x104

product_uid ram

89

Use case 1: unique identifier

public class Laptop {

static int uids = 0;

int product_uid;

int ram;

public Laptop(int ram) {

this.product_uid = uids;

this.ram = ram;

uids = uids + 1;

}

}

public class LaptopCreator {

public static void main(String[] args) {

Laptop l1 = new Laptop(500);

Laptop l2 = new Laptop(1000);

}

}

2
0x10

uids

0x100 0x200

0x22 0x26

l1 l2

0 500
0x100 0x104

product_uid ram

1 1000
0x200 0x204

product_uid ram

90

Use case 2: constant values

public class Checkers {

static final int WHITE = 0;

static final int BLACK = 1;

int[][] grid;

//...

public printGrid() {

for(int i = 0; i < grid.length; ++i) {

for(int j = 0; j < grid[i].length; ++j) {

if(grid[i][j] == WHITE) {

System.out.print("\u25CB");

}

else {

System.out.print("\u2B24");

}

}

System.out.print("\n"); }}}

Final keyword

• final int x makes the content of the cell immutable (we cannot

change it anymore).

• final Person p only means that we cannot assign p two times

with p = new Person(). But we can still change what’s inside of p

with p.name = "Alfred", as many times as we want (unless name

is final as well).
91

Has-a relationships

91

Drawing class diagrams

When thinking about the design of an object-oriented application, it is

often useful to draw a diagram showing how the classes are

interconnected.

ConcertApp
+main()

Concert
-startTime: int

-endTime: string
+Concert(startTime: int, endTime: int)

+duration(): int
ConcertPlanning

+ConcertPlanning()
+addConcert(concert: Concert)

+totalTimeDuration(): int

0..n

CREATED WITH YUML

92

Unified Modeling Language (UML)

UML is a formalism to draw diagrams representing your application.

Class diagram

• A class is a box with three parts: the name, the attributes and the

methods.

• Visibility : The symbols -, + or # in front of an attribute or method,

respectively for private, public, protected.

• public float m(int x) is written +m(x:int):float in UML.

The return type is written after the method.

93

Relationships between classes

Relationships (simplified view)

• Dependency (dashed arrow): Class A uses class B in a method, but

do not store object of type B as attributes.

• Association (plain line): Class A has an attribute of class B.

• Aggregation (arrow with empty diamond): Association + class B

does not depend on A to live.

• Composition (arrow with plain diamond): Association + class B

depends on A to live.

Each of these relationships can be annotated with multiplicities:

• 1: Exactly one instance.

• 0..1: Zero or one instance.

• 0..*: Zero or more instances.

• 1..*: One or more instances.

94

Aggregation vs Composition

Musician
-name:String

+Musician(name: String)

Band
-name:String

+Band(name: String)

1..*

Concert
-startTime: int

-endTime: string
+Concert(startTime: int, endTime: int)

+duration(): int

1

ConcertPlanning
+ConcertPlanning()

+addConcert(concert: Concert)
+totalTimeDuration(): int

0..*

CREATED WITH YUML

95

More on UML relationships

Association, aggregation and composition all represent a connection

between A and B such that B is an attribute of A.

• You don’t need to (and probably shouldn’t) specify all associations.

• You can use attributes instead of associations, if the link between

the two classes is not important for what you want to show.

• An aggregation implies that an object is a part of another, e.g., the

band and the musician.

• An association would be, for instance, between the band and the

musical style of the band.

UML should help you to explain the architecture of your project in a

compact and informative manner.

96

Inheritance (is-a relationship)

96

The manga example

Suppose the following class:

public class Book {

private String title;

private Person writer;

private int pages;

public Book(String title, Person writer, int pages) {

this.title = title;

this.writer = writer;

this.pages = pages;

}

public int numberOfPages() { return pages; }

...

}

Imagine we want to represent a manga (or comics). It is a book, but

with at least one additional characteristic: the artist who drew it.

Let’s pause a second, and think how we could do it with what we learnt.

97

Solution #1: Total rewrite

Perhaps the easiest solution is to create a totally new class Manga, not

related to Book:

public class Manga {

private String title;

private Person writer;

private Person artist;

private int pages;

public Manga(String title, Person writer,

Person artist, int pages)

{

this.title = title;

this.writer = writer;

this.artist = artist;

this.pages = pages;

}

public int numberOfPages() { return pages; }

...

}

The problem is quite obvious: we have two classes (Book and Manga)

with attributes and methods in common. Don’t repeat yourself (DRY)!

98

Solution #2: Forwarding

A better solution is to store Book as an attribute of Manga:

public class Manga {

private Book book;

private Person artist;

public Manga(String title, Person writer,

Person artist, int pages)

{

this.book = new Book(title, writer, pages);

this.artist = artist;

}

public int numberOfPages() { return book.numberOfPages(); }

...

}

We create forwarding methods in Manga to call the methods we need

from Book. At least, if a bug is corrected in Book, we automatically

benefit from the correction.

99

Solution #3: Inheritance

The concept of inheritance allows to “import” the attributes and

methods from a base class Book into a subclass Manga.

public class Manga extends Book {

private Person artist;

public Manga(String title, Person writer,

Person artist, int pages)

{

super(title, writer, pages);

this.artist = artist;

}

}

public class BookApp {

public static void main(String[] args) {

Manga snk = new Manga("Shingeki no kyogin", ..);

System.out.println("Number of pages of SNK: "

+ snk.numberOfPages());

}

}

Actually, it is not always simple to choose between solution #2 or #3 (cf.

https://en.wikipedia.org/wiki/Composition_over_inheritance).
100

https://en.wikipedia.org/wiki/Composition_over_inheritance

Inheritance subtlety #1: super keyword

The super keyword refers to the base class we inherited from. It can be

used in three ways:

1. Call the constructor of the base class.

2. Refer to the public or protected attributes of the base class.

3. Refer to the public or protected methods of the base class.

public class Manga extends Book {

private Person artist;

public Manga(String title, Person writer,

Person artist, int pages)

{

super(title, writer, pages);

this.artist = artist;

}

public int blackAndWhitePages() {

// We don’t count the cover, two middle pages and last page.

// (let’s suppose it’s really like that...)

return super.numberOfPages() - 4;

}

}

101

Inheritance subtlety #2: protected keyword

You can only use in the subclass Manga the attributes and methods with

a public or protected visibility qualifier.

public class Manga extends Book {

private Person artist;

public Manga(String title, Person writer,

Person artist, int pages)

{

super(title, writer, pages);

this.artist = artist;

}

public void addOnePage() {

// Will not work because ‘pages’ is private.

super.pages = super.pages + 1;

}

}

Just change private to protected if it makes sense:

public class Book {

protected int pages;

//...

}

102

Review and more

102

Preliminary

Here a example of inheritance we will reuse later:

class Weapon {

protected double damage;

public Weapon(double damage) {

this.damage = damage;

}

}

class Axe extends Weapon {

private static final double DAMAGE = 10;

public Axe() {

super(DAMAGE);

}

}

class Hammer extends Weapon {

private static final double DAMAGE = 20;

public Hammer() {

super(DAMAGE);

}

}

103

Quiz

• What are the attributes proper to an object and proper to a class?

• What is a constructor?

• What is super and this?

• Why does a constructor call must be the first instruction?

• What happens if we do not call super in the constructor of a

subclass?

104

Solutions

Object vs Class

• Object attribute: Weapon.damage.

• An object attribute is different each time we create a new object,

e.g., new Book().

• Class attributes: Axe.DAMAGE and Hammer.DAMAGE.

• A class attribute is shared by all objects, it is a kind of global

variable.

105

Solutions

Constructor

• A constructor is not a method of the object. It is a function that

construct the object.

• Therefore, constructors are not inherited (think: how could the

constructor Book initialize the attribute artist in Manga?)

106

Solutions

super and this : 2 usages

• During object construction: call a constructor of the parent’s class

(super(arg1, arg2)) or of the current class (this(arg1, arg2)).

• The last case implies that a class can have more than 1 constructor (more

on that in Chapter 4).

• During method call: super gives us a reference to the parent’s object,

and this to the current object, in order to explicitly access an attribute or

method (this.damage).

Pitfall: shadowing

protected double damage;

public Weapon(double damage) {

this.damage = damage;

}

Note: Shadowing of the attribute damage by the local variable, this is why we

need to add this.damage.

107

Solutions

Call constructor of the base class first!

• We first build the base class, before building the subclass.

• Sometimes a bit cumbersome if you want to “prepare” the argument

of the base class constructor.

⇒ In that case, use a static method to prepare the arguments (see

also Builder pattern in Chapter 1x).

108

Solutions

super not explicitly called

• The line super(); is automatically inserted as the first line of the

constructor body of the subclass.

• There is a compile-time error if there is no default constructor

(constructor without arguments) in the base class.

109

Chapter IV. Ad-hoc Polymorphism

109

Polymorphism

• Fundamental concept in computer science.

• It means that “something can exist in different forms”.

• A same type can have different behaviors.

Different kind of polymorphisms

• Ad-hoc polymorphism.

• Subtyping polymorphisme (through inheritance).

• Casting polymorphisme.

• Parametric polymorphism (through generics).

110

Polymorphism

• Fundamental concept in computer science.

• It means that “something can exist in different forms”.

• A same type can have different behaviors.

Different kind of polymorphisms

• Ad-hoc polymorphism.

• Subtyping polymorphisme (through inheritance).

• Casting polymorphisme.

• Parametric polymorphism (through generics).

110

Compile-time and runtime types

110

Compile-time type

Compile-time type

• The type is associated to the variable during the compilation.

• It is the type written when declaring a variable, e.g., Integer i.

• Variables with primitive types can only have compile-time type.

111

Exercise: compile-time type

class WeaponStore{

Weapon cheater = new Weapon(100);

Weapon axe = new Axe();

Weapon hammer = new Hammer();

int number_weapons = 3;

Number extra_damage = new Integer(42);

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore();

store.price(new Axe());

store.price(new Weapon(22));

112

Solution: compile-time type

class WeaponStore{

Weapon cheater = new Weapon(100); // Weapon

Weapon axe = new Axe(); // Weapon

Weapon hammer = new Hammer(); // Weapon

int number_weapons = 3; // int

Number extra_damage = new Integer(42); // Number

// The compile-time type of w is Weapon

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore(); // WeaponStore

store.price(new Axe()); // the temporary variable has type Axe.

store.price(new Weapon(22)); // temporary has type Weapon.

113

Runtime type

Runtime type

• The “real type” of the variable, as initialized at runtime.

• The runtime type (c1) is always a subclass or identical (c1 ≤ c2) to

the compile-time type (c2).

• For instance, Axe axe = new Weapon(39); does not make sense. A weapon

is not an axe, a weapon can be many other things.

• Moreover, technically, how would we initialize the remaining

members of Axe?

114

Example: runtime types

class WeaponStore{

Weapon cheater = new Weapon(100);

Weapon axe = new Axe();

Weapon hammer = new Hammer();

int number_weapons = 3;

Number extra_damage = new Integer(42);

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore();

store.price(new Axe());

store.price(new Weapon(22));

115

Solution: runtime types

class WeaponStore{

Weapon cheater = new Weapon(100); // Weapon

Weapon axe = new Axe(); // Axe

Weapon hammer = new Hammer(); // Hammer

int number_weapons = 3; // int

Number extra_damage = new Integer(42); // Integer

// The dynamic type of w can be

// Weapon, Axe or Hammer.

public int price(Weapon w) { /∗ ... ∗/ }

}

//... In main function.

WeaponStore store = new WeaponStore(); // WeaponStore

store.price(new Axe()); // the temporary variable has type Axe.

store.price(new Weapon(22)); // temporary has type Weapon.

116

Ad-hoc Polymorphism

116

Ad-hoc polymorphism (overloading)

Introductory challenge

• Create a class Monster and Obstacle each having a health points

attribute and a method to decrease these health points.

• Add two methods to Axe and Hammer to attack the monsters and

obstacles.

• The dammage of the axe on monsters is weigthed by 0.8, and on

obstacles by 1.2.

• For the hammer, we have 1.4 and 0.7.

117

Thoughts on method names

Did you call the method to decrease the health points set_life or

similarly?

Coding style

• Methods such as set_* and get_* are bad names because they lead to

imperative-style code, and not the “service-oriented” approach of

OO.

• They somewhat break encapsulation because they expose internal

attributes.

• A method should give a service, it must show in the name.

• It’s hard to find good names, but very important.

• Sometimes, we want to have records (and not objects), in which

case you can use immutable records or PODS and POJO,

http://en.wikipedia.org/wiki/Plain_old_data_structure).

118

http://en.wikipedia.org/wiki/Plain_old_data_structure

Thoughts on method names

Did you call the method to decrease the health points set_life or

similarly?

Coding style

• Methods such as set_* and get_* are bad names because they lead to

imperative-style code, and not the “service-oriented” approach of

OO.

• They somewhat break encapsulation because they expose internal

attributes.

• A method should give a service, it must show in the name.

• It’s hard to find good names, but very important.

• Sometimes, we want to have records (and not objects), in which

case you can use immutable records or PODS and POJO,

http://en.wikipedia.org/wiki/Plain_old_data_structure).

118

http://en.wikipedia.org/wiki/Plain_old_data_structure

First solution

class Monster {

private double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Obstacle { /∗ similar ∗/ }

class Axe extends Weapon {

static final double MONSTER_DAMAGE_RATIO = 0.8;

static final double OBSTACLE_DAMAGE_RATIO = 1.2;

public void attack_monster(Monster m) {

m.hit_me(damage * MONSTER_DAMAGE_RATIO);

}

public void attack_obstacle(Obstacle o) {

o.hit_me(damage * OBSTACLE_DAMAGE_RATIO);

}

//...

}

class Hammer extends Weapon { /∗ similar ∗/ }

119

Observation

public void attack_monster(Monster m)

Anything wrong with this method?

Coding style

You should avoid any repetition, in the code, but also in the names.

This method signature already indicates we attack a monster, no need

to repeat it.

120

Observation

public void attack_monster(Monster m)

Anything wrong with this method?

Coding style

You should avoid any repetition, in the code, but also in the names.

This method signature already indicates we attack a monster, no need

to repeat it.

120

Second solution

class Monster {

private double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Obstacle { /∗ similar ∗/ }

class Axe extends Weapon {

static final double MONSTER_DAMAGE_RATIO = 0.8;

static final double OBSTACLE_DAMAGE_RATIO = 1.2;

public void attack(Monster m) {

m.hit_me(damage * MONSTER_DAMAGE_RATIO);

}

public void attack(Obstacle o) {

o.hit_me(damage * OBSTACLE_DAMAGE_RATIO);

}

// ...

}

class Hammer extends Weapon { /∗ similar (constants change) ∗/ }

121

Overloading

Definition

Overloading is a compile-time mechanism allowing us to use a same

name for multiple methods, when those have a similar role.

Compile-time

It is only based on the compile-time type, the runtime type plays no

role, and the method calls are resolved at compile-time (aka. static

binding).

122

Overloading

Definition

Overloading is a compile-time mechanism allowing us to use a same

name for multiple methods, when those have a similar role.

Compile-time

It is only based on the compile-time type, the runtime type plays no

role, and the method calls are resolved at compile-time (aka. static

binding).

122

Overloading

When calling obj.method(a1, ..., an), how to be sure of which

methods will be selected at compile-time? (trivial steps in grey).

1. Identify the classes to explore (compile-time type of obj + super

classes).

2. Locate the accessible methods (public or protected in super classes)

with the same name.

3. Select the methods with the same arity (numbers of arguments).

4. Select the applicable methods, i.e., those with types of ai are ≤ Ti ,

Ti being the type of the parameter.

5. Apply an algorithm to select the most specific method.

Note: The return type does not matter.

123

Overloading resolution algorithm

This algorithm can be different depending on the language. Even

between different versions of a same language (Java 1.2 vs Java 1.5 or

later). Here, we present the most recent for Java.

1. Let Ai be the types of arguments, and Pi the types of the

parameters.

2. For each argument, compute the “inheritance distance” between Ai

and Pi , if Ai ≡ Pi then the distance is 1.

3. Add distances.

4. The method with the smallest distance is selected.

5. If several distances are identical, then a compile-time error

ambiguous call occurs.

124

Notes on overloading

• It is usually used when methods are non-ambiguous:

• A different arity.

• The parameters are not connected through inheritance.

• Otherwise, the programmer must manually execute the resolution

algorithm to be sure of which method is called.

• Therefore, you should use it carefully and keep it simple.

• Generally, the philosophy adopted by the Java librairies.

125

Exercise I

Don’t repeat yourself

Use a parent class Destructible extracting the common code in Monster

and Obstacle.

Solution

class Destructible {

protected double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Monster extends Destructible { /∗ ... ∗/}

class Obstacle extends Destructible { /∗ ... ∗/ }

126

Exercise I

Don’t repeat yourself

Use a parent class Destructible extracting the common code in Monster

and Obstacle.

Solution

class Destructible {

protected double life = 100;

public void hit_me(double damage) { life = Math.max(0, life - damage); }

}

class Monster extends Destructible { /∗ ... ∗/}

class Obstacle extends Destructible { /∗ ... ∗/ }

126

Exercise II

What is the method called, or the error, if for each object o declared

below, we write axe.attack(o)?

class Axe {

public void attack(Monster m) {} // (1)

public void attack(Obstacle o) {} // (2)

public void attack(Destructible d) {} // (3)

}

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

127

Solution: Exercise II

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

axe.attack(dmonster); // (3)

axe.attack(dobstacle); // (3)

axe.attack(monster); // (1)

axe.attack(obstacle); // (2)

Compile-time

Don’t forget that overloading only looks at the compile-time type!

128

Exercise III

What about these examples?

class Axe {

public void attack(Monster m, Obstacle o) {} // (1)

public void attack(Destructible d, Monster m) {} // (2)

public void attack(Monster m, Destructible d) {} // (3)

}

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

axe.attack(monster, obstacle);

axe.attack(dobstacle, monster);

axe.attack(dobstacle, dmonster);

axe.attack(dmonster, dmonster);

axe.attack(monster, monster);

axe.attack(monster, dobstacle);

129

Solution: Exercise III

class Axe {

public void attack(Monster m, Obstacle o) {} // (1)

public void attack(Destructible d, Monster m) {} // (2)

public void attack(Monster m, Destructible d) {} // (3)

}

Destructible dmonster = new Monster();

Destructible dobstacle = new Obstacle();

Monster monster = new Monster();

Obstacle obstacle = new Obstacle();

axe.attack(monster, obstacle); // (1)

axe.attack(dobstacle, monster); // (2)

axe.attack(dobstacle, dmonster); // error: no such method

axe.attack(dmonster, dmonster); // error: no such method

axe.attack(monster, monster); // error: ambiguous call between

// (2) and (3)

axe.attack(monster, dobstacle); // (3)

130

What to remember of ad-hoc polymorphism?

• Called polymorphism because a method can have several forms (all

the methods with an identical name).

• Overloading mechanism allowing us to use a same name for different

implementations. However, these methods should be connected

semantically.

• The method called is chosen at compile-time (static-binding).

131

Chapter V. Subtype Polymorphism

131

Introductory challenge

Challenge

Add a method ascii_art returning the ASCII drawing of the weapon

(String type).

class Axe { // ...

// from http://www.chris.com/ascii/index.php?art=objects/axes

public String ascii_art() {

return

" /’-./_ \n" + // What’s wrong here?

": ||,> \n" +

" \.-’|| \n" + // And here?

" || \n" +

" || \n" +

" || \n";

}

}

132

Introductory challenge

Challenge

Add a method ascii_art returning the ASCII drawing of the weapon

(String type).

class Axe { // ...

// from http://www.chris.com/ascii/index.php?art=objects/axes

public String ascii_art() {

return

" /’-./_ \n" + // What’s wrong here?

": ||,> \n" +

" \.-’|| \n" + // And here?

" || \n" +

" || \n" +

" || \n";

}

}

132

Introductory challenge (text block Java 15)

Challenge

Add a method ascii_art returning the ASCII drawing of the weapon

(String type).

class Axe { // ...

// from http://www.chris.com/ascii/index.php?art=objects/axes

public String ascii_art() {

return

"""

/’-./_

: ||,>

\\.-’||

||

||

||

""";

}

}

133

Subtype polymorphism

Shop

Consider a weapon shop ArrayList<Weapon> store;, can you print the ASCII

drawing of all the weapons in this store?

Issues

• Class Weapon doesn’t have a method ascii_art!

• How to view the “real or concrete type” an object of type Weapon?

More formally, how to view its runtime type (Axe or Hammer)? Spoiler:

We don’t! We use overriding instead so the runtime type is

automatically used.

134

Subtype polymorphism

Shop

Consider a weapon shop ArrayList<Weapon> store;, can you print the ASCII

drawing of all the weapons in this store?

Issues

• Class Weapon doesn’t have a method ascii_art!

• How to view the “real or concrete type” an object of type Weapon?

More formally, how to view its runtime type (Axe or Hammer)? Spoiler:

We don’t! We use overriding instead so the runtime type is

automatically used.

134

Overriding mechanism

Override-equivalent signatures

Two method signatures are override-equivalent if they have exactly the same

name, same parameters types and return type. Actually, the return type can

be covariant (we’ll talk about that in Chapter 7).

Overriding

For all classes T ≤Weapon, if a method T .m is override-equivalent to

Weapon.m, then the method called will be the one of the smallest subclass.

Late-binding

Method calls are resolved at runtime. Indeed, we cannot guess at

compile-time the runtime-type of the object. Why? Imagine the following

code:

Weapon w;

if(a) { w = new Axe();} else { w = new Hammer(); }

w.ascii_art(); // Axe.ascii art or Hammer.ascii art?

135

Overriding mechanism

Override-equivalent signatures

Two method signatures are override-equivalent if they have exactly the same

name, same parameters types and return type. Actually, the return type can

be covariant (we’ll talk about that in Chapter 7).

Overriding

For all classes T ≤Weapon, if a method T .m is override-equivalent to

Weapon.m, then the method called will be the one of the smallest subclass.

Late-binding

Method calls are resolved at runtime. Indeed, we cannot guess at

compile-time the runtime-type of the object. Why? Imagine the following

code:

Weapon w;

if(a) { w = new Axe();} else { w = new Hammer(); }

w.ascii_art(); // Axe.ascii art or Hammer.ascii art?

135

Overriding mechanism

Override-equivalent signatures

Two method signatures are override-equivalent if they have exactly the same

name, same parameters types and return type. Actually, the return type can

be covariant (we’ll talk about that in Chapter 7).

Overriding

For all classes T ≤Weapon, if a method T .m is override-equivalent to

Weapon.m, then the method called will be the one of the smallest subclass.

Late-binding

Method calls are resolved at runtime. Indeed, we cannot guess at

compile-time the runtime-type of the object. Why? Imagine the following

code:

Weapon w;

if(a) { w = new Axe();} else { w = new Hammer(); }

w.ascii_art(); // Axe.ascii art or Hammer.ascii art?

135

Example overriding

class Weapon {

public String ascii_art() {

return ????;

}

}

Design issue! A weapon cannot be draw in general. By the way, can a

“general weapon” exist? Probably not since it is an abstract concept.

Refactoring

• We must update the class Weapon to take into account the new

requirements.

• Class Weapon must be an abstract class! An abstract class can contain

attributes and methods, but some methods do not have a body.

136

Example overriding

class Weapon {

public String ascii_art() {

return ????;

}

}

Design issue! A weapon cannot be draw in general. By the way, can a

“general weapon” exist? Probably not since it is an abstract concept.

Refactoring

• We must update the class Weapon to take into account the new

requirements.

• Class Weapon must be an abstract class! An abstract class can contain

attributes and methods, but some methods do not have a body.

136

Complete example

abstract class Weapon {

protected double damage;

public Weapon(double damage) {

this.damage = damage;

}

abstract public String ascii_art();

}

class Axe extends Weapon {

private static final double DAMAGE = 10;

public Axe() {

super(DAMAGE);

}

public String ascii_art() {

return

"""

<|>

|

|

""";

}

}

137

Complete example (next)

class Hammer extends Weapon {

private static final double DAMAGE = 20;

public Hammer() {

super(DAMAGE);

}

public String ascii_art() {

return

"""

_ _

|_|_|

|

|

""";

}

}

public class TestWeapon {

public static void main(String[] args) {

ArrayList<Weapon> store = new ArrayList<>();

store.add(new Hammer());

store.add(new Axe());

for(Weapon w : store) {

System.out.println(w.ascii_art());

}

}

}
138

What to remember about subtype polymorphism?

• “Polymorphism” because a type can have several forms (the

subtypes, i.e., in Java the subclasses).

• Overriding mechanism allowing to redefine a behavior more precisely.

• Methods are selected at runtime (late-binding).

• At compile-time, the methods are selected according to the rules of

ad-hoc polymorphism and overloading.

139

Polymorphism Cocktail

139

Mixing overloading and overriding

• We can mix ad-hoc polymorphism and subtype polymorphism

together.

• We first select the method via overloading (selected at

compile-time).

• Then, at runtime, we check if overriding can apply (the signature

must be override-equivalent to the one selected at compile-time).

140

Exercise

class A {

void m(A x, B y){System.out.println ("1");}

void m(B x, A y){System.out.println ("2");}

}

class B extends A {

void m(B x, B y){System.out.println ("3");}

}

class C extends B {

void m(B x, B y){System.out.println ("4");}

void m(C x, C y){System.out.println ("5");}

void m(B x, A y){System.out.println ("6");}

}

141

Exercise (part 2)

For each call, what is the method selected at compile-time, and then at

runtime?

class PolymorphicCocktail {

public static void main(String[] args) {

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

a1.m(b1,c1);

b1.m(b1,c1);

c1.m(b1,c1);

a1.m(a1,a1);

a2.m(b1,c1);

a3.m(b1,c1);

b2.m(b1,c1);

// ... (more in the next slide)

142

Exercise (part 3)

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

// ...

a1.m(b2,a3);

a2.m(b2,a3);

a3.m(b2,a3);

a1.m(c1,b1);

b1.m(c1,b1);

b2.m(c1,b1);

c1.m(c1,b1);

}

}

143

Correction

class PolymorphicCocktail {

public static void main(String[] args) {

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

// solution of the form ‘(compile-time) / (execution-time)’

a1.m(b1,c1); // ambiguous between (1) and (2)

b1.m(b1,c1); // (3)/(3)

c1.m(b1,c1); // (4)/(4)

a1.m(a1,a1); // no suitable method found

a2.m(b1,c1); // ambiguous between (1) and (2)

a3.m(b1,c1); // ambiguous between (1) and (2)

b2.m(b1,c1); // (3)/(4)

a1.m(b2,a3); // (2)/(2)

a2.m(b2,a3); // (2)/(2)

a3.m(b2,a3); // (2)/(6)

// ... (more in the next slide).

144

Correction (part 2)

A a1 = new A();

B b1 = new B();

C c1 = new C();

A a2 = b1;

A a3 = c1;

B b2 = c1;

a1.m(c1,b1); // ambiguous between (1) and (2)

b1.m(c1,b1); // (3)/(3)

b2.m(c1,b1); // (3)/(4)

c1.m(c1,b1); // (4)/(4)

}

}

145

Complementary resources

The Java Language Specification

• Link: http://docs.oracle.com/javase/specs/ (Java 15):

• §8.4.8: overriding.

• §8.4.9: overloading.

• §15.12: Method invocation (detailed steps performed by the

compiler).

• Hard to read and understand because it is exhaustive!

• Nonetheless the best resource to find precise explanations.

146

http://docs.oracle.com/javase/specs/

Chapter VI. Casting Polymorphism

146

Casting of primitive types

146

Casting polymorphism

double price = 9.99;

int rounded_price = (int) price;

// rounded price = ?

Casting

Casting is an operation allowing to convert a value from a type to a

value of another type. For instance, to view price as an int instead of a

double.

147

Recall from Chapter 2...

A type is a size s ∈ N in bits and a pair of imaginary functions

f : {0, 1}s → T and g : T → {0, 1}s , such that T is the values you

manipulate in the program.

Examples

• For int: size = 32 bits, fint(02401000001) = 64,

• For float: size = 32 bits, ffloat(02401000001) = 9.108 . . .−44,

• For char: size = 16 bits, fchar (0801000001) = A,

• For boolean: size = 1 bit, fboolean(1) = true.

148

Bit-level Casting

We could just reinterpret the memory with the new type by changing the

function f :

• Let int x = 64; and float y = (float) x;.

• We could view this operation as:

(float)x = ffloat(gint(x)) = ffloat(02401000001) = 9.108 . . .−44 = y.

However, we would normally expect the casting operation to give

y = 64.0 as a result.

149

Type-level Casting

• To reach the expected result, we introduce a casting function

cast : int → float.

• This function does not reinterpret the bits, but work at the level of

the type T .

• Therefore, we have cast(64) = 64.0.

• There are cast functions for each conversion (float → int,

char → int, . . .).

150

Cast operations are partial functions

Some casting functions are partial functions (in theory):

• cast : float → int: 4.5 can’t be converted to integer.

• cast : int → short: 100000 can’t be converted to a short (too large).

• ...

In practice, they are some rules that make these functions total:

• cast : float → int: round towards 0, e.g.:

• cast(4.5) = 4

• cast(−4.5) = −4

• cast(NaN) = 0

• cast : int → short: truncate the extra bits, and simply use fshort on

the remaining bits:

1. gint(100000) = 00000000 00000001 10000110 10100000,

2. fshort(10000110 10100000) = −31072

151

Implicit casting

To improve readability, many languages provide some automatic and

implicit type conversions.

• Generally implicit when no precision is lost, e.g., short x = 10;

int y = x.

• Sometimes implicit although precision might be lost, e.g., int to

float.

Some languages such as Rust, forbids implicit casts, and favor explicit

casts instead.

152

Casting of object types

152

Casting of object types

Following inheritance relationships, we can cast an object to a superclass

or subclass.

• Upcast (implicit): Cast an object of type T to an object of type U

such that T ≤ U.

Weapon w = new Axe(); // The type Axe is upcasted to the type Weapon.

• Downcast: Cast an object of type T to an object of type U such

that T > U.

Axe a = (Axe) w; // The type Weapon is downcasted from the type Weapon to

the type Axe.

153

Downcast

Imagine the following code:

Weapon w = new Axe();

// ...

Hammer h = (Hammer) w; // oops!

• By downcasting, we cannot be sure that the runtime type of w is

actually a type Hammer, in contrast to upcasting where the

relationship can be verified at compile-time.

• In the previous example a ClassCastException is thrown.

154

Instanceof and getclass

When downcasting, you must always verify that the object you downcast

is of the expected type. Suppose T is the runtime type of x :

• x instanceof U evaluates to true if T ≤ U.

• x.getClass() == U.class evaluates to true if T = U.

Example (Instanceof vs getclass)

class MithrilAxe extends Axe { ... }

//...

Weapon w = new MithrilAxe();

if(w instanceof Axe) { System.out.println("w is an axe or a subtype of Axe.\n"); }

else if(w instanceof Hammer) { System.out.println("w is a hammer or a subtype of Hammer.\n"); }

// ...

if(w.getClass() == Axe.class) { System.out.println("w is an Axe."); }

else if(w.getClass() == MithrilAxe.class) { System.out.println("w is a MithrilAxe."); }

155

Is downcast a bad practice?

• Downcast is not necessarily a bad practice, however it leads to a

more imperative programming style, and might indicate some issues

with your object-oriented design.

• Nevertheless, downcast is always required for very specific cases such

as overriding the method equals, see Chapter 7.

156

The expression problem

This simple discussion on downcast actually leads to a fundamental problem

called the expression problem2.

Extending data or operation?

• Casting polymorphism makes it easy to add new algorithms on existing

data, without modifying existing code.

• Subtype polymorphism makes it easy to add new data classes without

modifying existing algorithms.

It is best explained through an example: see Live Coding Session: Coding a

calculator!

We will see in Chapter 10 the visitor design pattern, an object-oriented pattern

that partially solves this problem.

2https://en.wikipedia.org/wiki/Expression_problem

157

https://en.wikipedia.org/wiki/Expression_problem

What to remember about casting polymorphism?

• We can transform a value to view it under various forms.

• This form of polymorphism is probably the most widespread across

languages (C, C++, Python, Javascript, . . .).

• You must be careful to the specificities of each language. For

instance in C++, there are 4 different casting operators (static_cast

(type-level casting), reinterpret_cast (bit-level casting), . . .).

• Expression problem: Tensions between data extension and

algorithmic extension, and casting polymorphism vs subtype

polymorphism.

158

Chapter VII. (Almost) Everything is Object

158

Object class

158

(Almost) Everything is object

All classes created automatically inherit from an existing class called

Object.

class Weapon { ... }

// is equivalent to

class Weapon extends Object { ... }

This class contains many methods that can be overridden in the

subclasses.

159

Almost?

Only primitive types are not objects, thus do not inherit from Object. But,

they have object equivalent such as Double, Integer, ... For instance, the

class Integer3 is written as:

public class Integer {

private int value;

public Integer(int v) { this.value = v; }

// ...

}

Autoboxing cast

Autoboxing is a special casting mechanism in Java to automatically cast a

primitive type to its class equivalent:

static void f(Double d) { ... }

f(2.4); // call f with a primitive type automatically casted into Double.

The converse operation exists too and is called unboxing.
3https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/

lang/Integer.html

160

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Integer.html

Object class

class Object {

// Utility methods

public String toString() { ... }

protected Object clone() throws CloneNotSupportedException { ... }

public boolean equals(Object obj) { ... }

public int hashCode() { ... }

// Thread related.

public final void notify() { ... }

public final void notifyAll() { ... }

public final void wait() throws InterruptedException { ... }

public final void wait(long timeout)

throws InterruptedException { ... }

public final void wait(long timeout, int nanos)

throws InterruptedException { ... }

// Garbage collector related.

protected void finalize() throws Throwable { ... }

// Reflection related.

public final Class<?> getClass() { ... }

}

We will focus on the utility methods which are the most common.

161

Utility methods

The apparent simplicity of these methods is deceptive and they must be

implemented carefully.

Effective Java, 3rd Edition, Joshua Bloch

• toString: Item 12: Always override toString

• clone: Item 13: Override clone judiciously

• equals: Item 10: Obey the general contract when overriding equals

• hashCode: Item 11: Always override hashCode when you override equals

162

Introductory exercise

Instructions

git clone https://github.com/ptal/PF2-lab-B.git

cd PF2-lab-B

mvn compile

mvn exec:java -Dexec.mainClass="lab.B.Main" -q

Add to the right classes (possibly Weapon, Axe and Hammer) the method

toString:

@Override public String toString() { ... }

163

Correction

toString

public abstract class Weapon {

protected double damage;

// ...

@Override public String toString() {

return damage + " damages";

}

}

public class Hammer extends Weapon {

// ...

@Override public String toString() {

return "Hammer of " + super.toString();

}

}

• Although Weapon is only a concept, we implement toString in

order to reuse its code in subclasses (DRY principle).

• To remember: always override toString (Item 12).

164

Copying

164

clone method

We distinguish three kinds of copies:

• Aliasing: Only the reference of the object is copied.

ArrayList<Integer> i = new ArrayList();

ArrayList<Integer> j = i;

j.add(3); // modify both i and j (see Chapters 2 and 3).

• Shallow copy: The attributes of the object are copied by aliasing.

public class IntegerList {

public int x;

public Array<Integer> y;

public IntegerList shallowCopy() {

return new IntegerList(x, y);

}

}

// ...

IntegerList p1 = new IntegerList(3, new ArrayList());

IntegerList p2 = p1.shallowCopy();

p2.x = p2.x + 1; // modify only x in p2.

p2.y.add(3); // modify the array of both p1 and p2.

165

clone method

• Deep copy: The attributes are themselves copied using clone:

class IntegerList implements Cloneable {

public int x;

public Array<Integer> y;

@Override public IntegerList clone() {

return new IntegerList(x, y.clone());

}

}

// ...

IntegerList p1 = new IntegerList(3, new ArrayList());

IntegerList p2 = p1.clone();

p2.x = p2.x + 1; // modify only x in p2.

p2.y.add(3); // modify the array of p2 only.

166

Additional comments on clone

• Usually, clone is implemented for deep copies. It is always good to

mention the kind of copy in the documentation.

• The interface Cloneable must be used to indicate a class

implements clone.

• According to Java documentation, although not strict requirements,

you should have:

x.clone() != x

x.clone().getClass() == x.getClass()

x.clone().equals(x)

Your turn!

Add clone methods to the right classes in Lab B.

167

Covariant return type

When using clone, we must actually cast the object, e.g.,

Axe axe1 = new Axe();

Axe axe2 = (Axe)axe1.clone(); // Because clone returns an object.

We saw that two signatures are override-equivalent if they have the same

name and the same parameters types. The return type can be covariant4:

the return type can be a subtype of the return type of the parent’s

method. Therefore we can write:

@Override public Axe clone() // instead of Object clone()

while preserving override-equivalent signatures.

4http://en.wikipedia.org/wiki/Covariance_and_contravariance_

%28computer_science%29

168

http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29

Equality

168

What does it mean to be equal?

From a mathematical perspective, we define equivalent things in a set S

using an equivalence relation θ ⊆ S × S .

Equivalence relation

• Reflexive: ∀x ∈ S , (x , x) ∈ θ,

• Symmetric: ∀x , y ∈ S , (x , y) ∈ θ ⇔ (y , x) ∈ θ,

• Transitive: ∀x , y , z ∈ S , (x , y) ∈ θ ∧ (y , z) ∈ θ ⇒ (x , z) ∈ θ.

• The method boolean equals(Object other) should specify an

equivalence relation (not always possible however).

• By default, Object.equals only compares the references. This

corresponds to the smallest equivalence relation.

169

Additional requirements

We have two additional requirements for equivalence relations over objects:

• x.equals(null) must always be false,

• Consistent: x.equals(y) == x.equals(y) (multiple invocations return

the same result).

Why not boolean equals(Axe a) instead of boolean equals(Object o)

Because equals would not be override-equivalent to Object.equals anymore,

which means that the implementation of equals is selected at compile-time by

overloading.

170

Your turn!

• Implement equals for the right classes.

• Add a new class:

public class MithrillAxe extends Axe {

private boolean madeByDwarf;

// ...

}

Add the methods toString, clone and equals to this class, and

test them.

• Can we guarantee MithrillAxe.equals to be an equivalence

relation?

171

Implementing the equals method (part 1a)

public abstract class Weapon {

@Override public boolean equals(Object o) {

if(o == this) {

return true;

}

else if (!(o instanceof Weapon)) {

return false;

}

else {

return ((Weapon)o).damage == damage;

}

}

}

172

Implementing the equals method (part 1b)

We must override equals in Hammer and Axe too, otherwise an axe and

a hammer with the same amount of damages would be considered equal:

public class Axe extends Weapon {

@Override public boolean equals(Object o) {

return (o instanceof Axe) && super.equals(o);

}

}

public class Hammer extends Weapon {

@Override public boolean equals(Object o) {

return (o instanceof Hammer) && super.equals(o);

}

}

173

Implementing the equals method (part 2)

public class MithrillAxe extends Axe implements Cloneable {

@Override public boolean equals(Object o) {

if(o == this) {

return true;

}

else if (!(o instanceof MithrillAxe)) {

return false;

}

else {

return super.equals(o)

&& ((MithrillAxe) o).madeByDwarf == madeByDwarf;

}

}

Unfortunately, this method is not symmetric:

MithrillAxe a1 = new MithrillAxe(true);

Axe a2 = new Axe();

a2.equals(a1); // is true, but

a1.equals(a2); // is false.

174

Implementing the equals method (part 3)

public class MithrillAxe extends Axe implements Cloneable {

@Override public boolean equals(Object o) {

if(o == this) {

return true;

}

else if(o.getClass() == Axe.class) {

return super.equals(o);

}

else if (!(o instanceof MithrillAxe)) {

return false;

}

else {

return super.equals(o)

&& ((MithrillAxe) o).madeByDwarf == madeByDwarf;

}

}

That’s the best we can do, but this method is still not transitive:

MithrillAxe a1 = new MithrillAxe(true);

Axe a2 = new Axe();

MithrillAxe a3 = new MithrillAxe(false);

a1.equals(a2); // is true and

a2.equals(a3); // is true, but

a1.equals(a3); // is false. 175

A use-case of the equals method

The operation ArrayList.contains relies on equals to detect objects

that are equal.

ArrayList<Weapon> store = new ArrayList<>();

store.add(new Axe());

store.add(new MithrillAxe(true));

System.out.println(store.contains(new Axe())); // prints true.

If equals is not implemented, the semantics of contains changes, and

rely on reference equality.

176

Hash

176

Hashing

A hash is a function hashCode : T → N. That is, it maps a type T to an

integer.

• x.equals(y) implies x.hashCode() == y.hashCode().

• However, the converse is not necessarily true.

• To guarantee this implication, you should always override

hashCode if you override equals.

• Normally, it is faster to compute a hash than comparing two objects.

177

An example

public abstract class Weapon {

protected int damage;

@Override public int hashCode() {

return damage;

}

}

public class MithrillAxe extends Axe implements Cloneable {

private boolean madeByDwarf;

@Override public int hashCode() {

return super.hashCode() * 10 + (madeByDwarf ? 1 : 0);

}

}

In that case, we have x.hashCode() == y.hashCode() ⇔
x.equals(y) (assuming no overflow). But that is not always the case,

imagine the hash function of an array.

178

A use-case of hashCode: HashSet

java.util.Set is an interface for collection implementing the semantics

of a (mathematical) set. It has the property that if x.equals(y), then

only x or y is in the set.

From a practical standpoint, a set can be implemented by various data

structures with different tradeoff.

HashSet<Weapon> store = new HashSet<>();

store.add(new Axe());

store.add(new MithrillAxe(true));

store.add(new MithrillAxe(false));

store.add(new Axe());

System.out.println(store.size()); // prints 3.

Another possible choice is TreeSet, however this one needs the class to

implement the Comparable interface (imposes a total order on the

elements).

179

Summary

• Object is the parent class of all classes.

• Four essential methods to override from Object.

• A lot of subtleties... Necessary to study these to become proficient

in Java.

Correction of the exercises: git checkout correction in your

repository (you need to commit your changes first).

180

Chapter VIII. Error Management

180

Error management

We are going to study two aspects of error management:

• How to report and handle errors generated by a method.

• How to avoid unwanted errors by testing.

181

Error handling

181

Case study: search a Pokemon card

We are considering the laboratory 2 as an example. In this laboratory, we

have a deck of cards and we want to search for a card meeting a criterion

such as finding a card with a specific name.

An example of signature for this method is:

public Card searchByName(String name) { ... }

182

What to do if the card is not in the collection?

We look at various solutions, proposed in your labs, to this problem:

(I) Return a special value (e.g., null or -1),

(II) Return the string representation of the card directly,

(III) Return an error object of the same type,

(IV) Return a list,

(V) Throw an exception.

183

Case Study Ia: Return null

public Card getCardById(String id) {

for (Card card : deck) {

if(id.equals(card.getId())) {

return card;

}

}

return null;

}

If the card is not in the deck, null is returned.

184

Case Study Ib: Return -1

public int findCardIndexByNumber(int cardNumber)

{

int index = -1;

for (int i=0; i < deck.size() ; ++i) {

if (deck.get(i).getCardNumber() == cardNumber){

index = i;

break;

}

}

return index;

}

Instead of directly returning a card, we return its index in the deck, and

-1 if it is not inside.

185

Case Study I: Discussion

This kind of error handling is very common in language such as C. One

problem with such scheme is on the calling site:

public void modifyCard(String id) {

Card card = getCardById(id);

if (card != null)

card.modify();

}

• Each time the method is called, we must check for card != null

or cardIdx != -1.

• We can easily forget to check that, and generate a

NullPointerException or OutOfBoundException.

• Normally, this solution is not the way to go.

• See also Code Clean, Chapter 7, “Don’t return null”.

186

Case Study I: Discussion

Further, it leads to code harder to read when all the error handling is

performed that way:

int id = askUserForID();

if(id == -1) {

wrongUserInput();

}

else {

Card card = getCardById(id);

if(card == null) {

wrongID();

}

else {

// ...

}

}

The logic of the code is lost in error handling, the code is actually quite

simple:

int id = askUserForID();

Card card = getCardById(id);

// ...

187

Case Study II: Return the String representation

public String searchCardByNumber(){

System.out.println("What is the number you want to search?");

String searchedNumber= input.getInput();

for(int i=0;i < cards.size(); i++){

if(cards.get(i).number.equals(searchedNumber))

return "Searched card: \n" +cards.get(i).toString();

}

return "Card number doesn’t exist.";

}

188

Case Study II: Discussion

This solution has massive downsides:

• We cannot reuse searchCardByNumber for something else (e.g.,

modifying the card),

• We cannot use searchCardByNumber if we already obtained the ID

from another source,

• The user interface is tightly coupled with the business logic: hard to

maintain.

• This function has too many responsibilities: (i) ask a number to the

user, (ii) search the number, (iii) prepare the resulting output.

• This is not a good solution neither.

• Bad variant: searchCardByNumber directly prints the message and

returns nothing.

189

Case Study III: Return an error object of the same type

public Card searchByName(String name) {

Card matching = new Card (" Not Found", " ", 0);

for(int i=0; i < cards.size(); i++)

{

if (cards.get(i).getName().equals(name))

{

matching = cards.get(i);

return matching;

}

}

return matching;

}

190

Case Study III: Discussion

This solution is not too bad, but has a strong disadvantage:

This method expects to be called in a specific context.

That is, it expects the card to be printed immediately afterwards.

• What if we use this method in another context, e.g., to find a card

to modify?

• Should we let the user modify a card that doesn’t exist?

• How to detect the card doesn’t exist?

Note that in some other places, an improvement of this solution can be

good, c.f., Code Clean, Chapter 7, “Define the Normal Flow”.

See also the Special Case Design Pattern.

191

Case Study IV: Return a list

public ArrayList<Card> getCardsByName(String name) {

ArrayList<Card> searchResults = new ArrayList<Card>();

for (Card card : deck) {

if(name.equals(card.getName())) {

searchResults.add(card);

}

}

return searchResults;

}

192

Case Study IV: Discussion

This solution is a good one:

• It returns an empty list if no card matches the name,

• It is callable in any kind of context,

• It generalizes the previous method to cards with multiple names

(why can it happen though?).

See also “Item 54: Return empty collections or arrays, not nulls”,

Effective Java.

193

Case Study IVb: Return a Optional

public Optional<Card> getCardByName(String name) {

for (Card card : deck) {

if(name.equals(card.getName())) {

return Optional.of(card);

}

}

return Optional.empty();

}

194

Case Study IVb: Discussion

On the calling site, we cannot forget to check that the card exists (unlike

with null and -1), because this information is built in the return type.

Optional<Card> card_opt = getCardByName(name);

if(card_opt.isPresent()) {

Card card = card_opt.get();

}

else {

// ...

}

However, the code can become less clear (similarly than with return

code). The methods Optional.ifPresent, Optional.map,... can help

for this purpose.

See also “Item 55: Return optionals judiciously”, Effective Java.

195

Case Study V: Throw an exception

public Card searchCardByName(String name){

for (Card card : cards) {

if(card.name().equal(name)) {

return card;

}

}

throw new RuntimeException("Card not found");

}

196

Case Study V: Discussion

This is the most idiomatic way of reporting an error in Java. Exceptions

are, however, not perfect. We give a more in-depth explanation of

exceptions in the following slides.

197

Exception

197

Syntax of exception

ThrowStatement:

throw Expression ; throw new CardNotFound(cardName);

TryStatement:

try Block Catches try { ... } catch(CardNotFound c) { ... }
try Block [Catches] Finally try { ... } catch(CardNotFound c) { ... } finally { ... }

198

Exception by example

public class CardNotFoundException extends RuntimeException {

private String name;

public CardNotFound(String name) { this.name = name; }

public String toString() {

return "The card " + name + " could not be found in the deck.";

}

}

public Card searchCardByName(String name) {

for (Card card : cards) { ... }

throw new CardNotFoundException(name);

}

public void printCard(String name) {

try {

Card card = searchCardByName(name);

System.out.println(card);

}

catch(CardNotFoundException e) {

System.out.println(e);

}

}

199

Advantages and disadvantages of exceptions

Advantages

• Exceptions provide a clean way to handle errors separately from the

normal flow of the code.

• They are non-intrusive, meaning that the signature of the method

does not need to be modified.

• Exceptions can be arbitrarily rich in information.

Disadvantages

• It is sometimes hard to figure out the exceptions a method can

throw, documentation is therefore important for this purpose.

See “Item 74: Document all exceptions thrown by each method”, Effective Java

• Can be easily ignored, and ends up in the main function, which then

exits and prints the exception calling stack.

200

Additional feature I: Checked exception

Place the exceptions a method can throw in the signature of its method:

public Card searchCardByName(String name) throws CardNotFoundException {

for (Card card : cards) { ... }

throw new CardNotFoundException(name);

}

This forces the calling method to treat the exception, however:

• If the exception is treated higher in the calling stack, it forces all the

intermediate calling methods to add this exception to their

signatures.

• It is tedious to use in practice, and not too useful.

• As suggested by Code Clean (Chapter 7), we will avoid using

checked exceptions.

• However, it is not a universal point of view, see “Item 70: Use checked

exceptions for recoverable conditions and runtime exceptions for programming errors”,

Effective Java.

201

Additional feature II: try-with-resources

When acquiring a resource, such as Scanner, a file or a network socket,

we must close it after using it:

public Optional<String> readFirstLineOf(String path) {

BufferedReader br = new BufferedReader(new FileReader(path));

try {

return Optional.of(br.readLine());

} catch(IOException) {

return Optional.empty();

} finally {

br.close();

}

}

202

Additional feature II: try-with-resources

The try-with-resources statement is a convenient syntactic sugar to

automatically closing a resource:

public Optional<String> readFirstLineOf(String path) {

try (BufferedReader br =

new BufferedReader(new FileReader(path))) {

return Optional.of(br.readLine());

} catch(IOException) {

return Optional.empty();

}

}

No need for the finally block, br is closed automatically.

203

Additional feature II: try-with-resources

The try-with-resources statement works with any class implementing the

interface Closeable. For instance with Scanner:

public Optional<Integer> readInteger() {

try (Scanner scanner = new Scanner(System.in)) {

if(scanner.hasNextInt()) {

return Optional.of(scanner.nextInt());

}

}

return Optional.empty();

}

204

Testing

204

Black-box vs white-box testing

Two main categories of testing:

• Black-box testing: we test the functionalities of a system based on

its input-output. This is how we tested Connect Four.

• White-box testing: The internal methods of the system are tested.

This is (almost) how we tested DynamicArray.

Testing an overall behavior is generally done by black-box testing. This is

also much easier to test GUI that way.

Here, we will focus on unit testing which is a form of white-box testing.

205

Why testing our project?

• To find some bugs before they appear in production.

• To be the first user of our method: a method hard to test will be

hard to use.

• To trust our code: when we modify a part of our code, we can run

the tests to verify nothing is broken.

• To gain time: debugging is very long and painful.

206

How to unit test?

As we have shown for DynamicArray, we do not need anything special

to start unit testing. However, it might be convenient to use a dedicated

testing framework, here we will use JUnit 5, aka. JUnit Jupiter.

(https://junit.org/junit5/docs/current/user-guide/)

Example

You can retrieve a sample test project testing the class DynamicArray

by doing:

git clone https://github.com/ptal/lab2-pokedeck/

cd lab2-pokedeck

git checkout testing

mvn test

207

https://junit.org/junit5/docs/current/user-guide/

Add to pom.xml

...

<build>

<plugins>

<plugin>

<artifactId>maven-surefire-plugin</artifactId>

<version>2.22.2</version>

</plugin>

<plugin>

<artifactId>maven-failsafe-plugin</artifactId>

<version>2.22.2</version>

</plugin>

</plugins>

</build>

<dependencies>

<dependency>

<groupId>org.junit.jupiter</groupId>

<artifactId>junit-jupiter-api</artifactId>

<version>5.7.1</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.junit.jupiter</groupId>

<artifactId>junit-jupiter-engine</artifactId>

<version>5.7.1</version>

<scope>test</scope>

</dependency>

</dependencies>

(See https://junit.org/junit5/docs/current/user-guide/

#running-tests-build-maven)
208

https://junit.org/junit5/docs/current/user-guide/#running-tests-build-maven
https://junit.org/junit5/docs/current/user-guide/#running-tests-build-maven

Create a JUnit test

• Create the folder src/test/java/.

• Inside, it can follow the same package hierarchy than in

src/main/java, e.g., src/test/java/lab2/pcg/DeckTest.java.

• You create one test class per class you want to test, e.g., to test

DynamicArray.java, you create the class

DynamicArrayTest.java.

209

Testing a method

class DynamicArrayTest {

@Test

@DisplayName("Add elements in DynamicArray")

void testAdd() {

DynamicArray array = new DynamicArray();

assertEquals(array.size(), 0);

assertTrue(array.isEmpty());

array.clear();

assertEquals(array.size(), 0);

assertTrue(array.isEmpty());

array.add(4);

array.add(5);

array.add(6);

assertEquals(array.toString(),"[4, 5, 6]");

}

• @Test: only the methods with this annotation are called for testing.

• assertEquals(expr1, expr2) checks that both expressions are

equal.

• assertTrue(expr) checks the expression is true.

210

BeforeEach annotation

DynamicArrayTest is a normal class, so we can declare attributes:

class DynamicArrayTests {

private DynamicArray array;

@BeforeEach

void init() {

array = new DynamicArray();

}

@Test

@DisplayName("Add elements in DynamicArray")

void testAdd() {

assertEquals(array.size(), 0);

...

}

Instead of declaring and initializing array in all testing methods, we use

@BeforeEach to call init() before each method.

211

Testing for exceptions

@Test

@DisplayName("Add and remove elements in DynamicArray")

void testRemove() {

populate(); // add the elements 4, 5, 6 in the array.

array.remove(1);

testArrayContent(2, "4, 6");

array.remove(1);

testArrayContent(1, "4");

assertThrows(ArrayIndexOutOfBoundsException.class, () -> array.remove(1));

array.remove(0);

testArrayContent(0, "");

}

assertThrows(E.class, () -> x.f()) tests that the method x.f()

is throwing an exception of type E.

212

What is a good test? FIRST!

• [F]ast: Tests must be very fast so we run them frequently.

• [I]solated : Tests must not connect to a database, the network, . . .

• [R]epeatable: Running the same test 10 times must give the same

result. Randomness is proscribed.

• [S]elf-validating : The process of verifying if a test succeeds must be

automatic, e.g., we shall not need to read the output of a test.

• [T]imely : Don’t write Java code without test, 1 method = 1 test.

Source: Pragmatic unit testing in Java 8 with JUnit

213

Write a good test: Right-BICEP

• Right Are the results right?

• B Are all the boundary conditions correct?

• I Can you check inverse relationships?

• C Can you cross-check results using other means?

• E Can you force error conditions to happen?

• P Are performance characteristics within bounds?

Source: Pragmatic unit testing in Java 8 with JUnit

214

Test Driven Development (TDD)

Methodology where the tests are central to the project:

• Instead of writing the code, then the tests, you do the opposite!

• Because we write the tests first, it forces us to think about the

usability of our methods.

More about testing in Software Engineering 1 and Software Engineering 2.

215

Chapter IX. Parametric Polymorphism

215

Introduction

• Context: In lab 2, you implemented DynamicArray.

• Problem: It can only store integer values.

• Today: How can we design an array for any kind of values?

public class DynamicArray {

private ?? data;

public DynamicArray() { ?? }

public int size() { ?? }

public boolean add(?? e) { ?? }

public ?? get(int index) { ?? }

}

216

Solution 1: with Object

We can use an array of Object, since, remember, every class inherits

from Object.

public class ArrayList {

static final int DEFAULT_CAPACITY = 10;

private Object[] data;

private int size = 0;

public ArrayList() { data = new Object[DEFAULT_CAPACITY]; }

public int size() { return size; }

public void add(Object e) {

ensureCapacity();

data[size] = e;

++size;

}

public Object get(int i) {

if(i < 0 || i >= size) { throw OutOfBoundException(); }

return data[i];

}

private void ensureCapacity() { /∗ ... ∗/ }

}

217

Problems. . .

• Make a list of String.

• Add and retrieve a string with this list.

• Is it easy and readable?

The downcast (String)e; is not very readable and secure, why?

ArrayList personNames = new ArrayList();

personNames.add(new String("Gertrude"));

personNames.add(new String("Johnny")));

Object e = personNames.get(1);

String name = (String)e;

Exception ClassCastException for:

Integer i = (Integer)e;

218

Problems. . .

• Make a list of String.

• Add and retrieve a string with this list.

• Is it easy and readable?

The downcast (String)e; is not very readable and secure, why?

ArrayList personNames = new ArrayList();

personNames.add(new String("Gertrude"));

personNames.add(new String("Johnny")));

Object e = personNames.get(1);

String name = (String)e;

Exception ClassCastException for:

Integer i = (Integer)e;

218

Problems. . .

• Make a list of String.

• Add and retrieve a string with this list.

• Is it easy and readable?

The downcast (String)e; is not very readable and secure, why?

ArrayList personNames = new ArrayList();

personNames.add(new String("Gertrude"));

personNames.add(new String("Johnny")));

Object e = personNames.get(1);

String name = (String)e;

Exception ClassCastException for:

Integer i = (Integer)e;

218

And so?

• Until Java 5.0, it was the only solution.

• In Java 5.0, the concept of generics enables parametric

polymorphism.

What are the problems of an array of Object?

• Casts are required.

• No compile-time check if the cast is invalid.

• For instance: House h = (House)e, in the previous example,

compiles, but an exception is thrown at runtime.

219

Parametric polymorphism: don’t repeat yourself!

• To avoid casts, we could create a ArrayList class for each types,

e.g., ArrayListInteger or ArrayListPokemonCard.

• But the implementation of the methods would be redundant.

• Actually, we don’t even need to know the underlying type to

implement these methods!

• Solution: Use generics!

Advantages

• The code is safer and more readable.

• Decrease runtime casts.

• Allows us to write generic classes and algorithms more easily.

220

Solution 2: Generics (first try)

public class ArrayList<T> {

static final int DEFAULT_CAPACITY = 10;

private T[] data;

private int size = 0;

public ArrayList() { data = new T[DEFAULT_CAPACITY]; }

public int size() { return size; }

public void add(T e) { /∗ as in solution 1 ∗/ }

public T get(int i) { /∗ as in solution 1 ∗/ }

private void ensureCapacity() { /∗ ∗/ }

}

• ArrayList<T> in now parametric in a type T.

• ArrayList<T> remains a class, that can be used as a “normal

class”.

221

A subtlety (second try)

public class ArrayList<T> {

static final int DEFAULT_CAPACITY = 10;

private T[] data;

private int size = 0;

public ArrayList() { data = (T[]) new Object[DEFAULT_CAPACITY];}

public int size() { return size; }

public void add(T e) { /∗ idem ∗/ }

public T get(int i) { /∗ idem ∗/ }

private void ensureCapacity() { /∗ ∗/ }

}

Java does not support creating array of generic elements. Therefore, we

create an array of objects that we cast immediately to the generic type.

222

Generics are transformed at compile-type

Backward compatible extension

• When generics were introduced, a lot of code already exists, so this

existing code should not break with new Java version.

• Solution: Generics are erased at compile-time, and transformed into

Object.

• Hence, generics are actually transformed to the code we had in

solution 1, but we have additional safety guarantees.

223

Compiling generics

Two techniques

1. Code expansion (such as in C++), a new class is automatically

created for each class instantiation:

• ArrayList<Double> −→ ArrayListDouble

• ArrayList<String> −→ ArrayListString

• The parametric type T is replaced by the real one.

2. Type erasure (as in Java)

• The parametric type T is replaced by a super type (Object).

• Type conversions are added by the compiler automatically.

• Generated code is the same as for solution 2.

224

Two usages of generic classes, a single code

• In Java, the generic type is replaced by Object.

• Which means that we can actually use ArrayList as a generic class

or not.

• For instance, we can write ArrayList without generic parameter,

and we will have a class with array of objects.

225

Two usages of generic classes, a single code

Non-generic usage

ArrayList x = new ArrayList();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = (String)x.get(0);

Line 2: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new String("M. George"));

Line 3: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new Integer(0));

• Compiler will output warnings.

• Heterogeneous array (several types) are generally a bad idea, it is

better to use inheritance or enumeration instead.

• Always the risk to generate an exception if we mess up the cast.

226

Two usages of generic classes, a single code

Non-generic usage

ArrayList x = new ArrayList();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = (String)x.get(0);

Line 2: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new String("M. George"));

Line 3: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new Integer(0));

• Compiler will output warnings.

• Heterogeneous array (several types) are generally a bad idea, it is

better to use inheritance or enumeration instead.

• Always the risk to generate an exception if we mess up the cast.

226

Two usages of generic classes, a single code

Non-generic usage

ArrayList x = new ArrayList();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = (String)x.get(0);

Line 2: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new String("M. George"));

Line 3: warning: [unchecked] unchecked call to add(T) as a member

of the raw type ArrayList

x.add(new Integer(0));

• Compiler will output warnings.

• Heterogeneous array (several types) are generally a bad idea, it is

better to use inheritance or enumeration instead.

• Always the risk to generate an exception if we mess up the cast.

226

Two usages of generic classes, a single code

Generic usage

ArrayList<String> x = new ArrayList<String>();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = x.get(0);

Line 3: error: incompatible types: Integer cannot be converted

to String

x.add(new Integer(0));

• The compiler generates an error.

• It guarantees we can only put in the list what is specified in the

angle brackets (ArrayList<MyType>).

• No need to cast when we use get, we give the compiler enough

information so it can safely add the cast itself.

227

Two usages of generic classes, a single code

Generic usage

ArrayList<String> x = new ArrayList<String>();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = x.get(0);

Line 3: error: incompatible types: Integer cannot be converted

to String

x.add(new Integer(0));

• The compiler generates an error.

• It guarantees we can only put in the list what is specified in the

angle brackets (ArrayList<MyType>).

• No need to cast when we use get, we give the compiler enough

information so it can safely add the cast itself.

227

Two usages of generic classes, a single code

Generic usage

ArrayList<String> x = new ArrayList<String>();

x.add(new String("M. George"));

x.add(new Integer(0));

String name = x.get(0);

Line 3: error: incompatible types: Integer cannot be converted

to String

x.add(new Integer(0));

• The compiler generates an error.

• It guarantees we can only put in the list what is specified in the

angle brackets (ArrayList<MyType>).

• No need to cast when we use get, we give the compiler enough

information so it can safely add the cast itself.

227

Advanced concepts of generics

227

Multiple generics parameters

• Some classes need several generics type.

• For instance in the associative array data structure.

Associative array

• Associate a key to a value. For instance, the name of someone to its

address.

• HashMap<String, Address> directory = new HashMap<String, Address>();

public class SimpleMap<K,V> { // Key and Value

private ArrayList<Pair<K,V>> data;

private static class Pair<K,V> {

public K key;

public V value;

}

// ...

}

228

Type inference

• Type inference allows us to ask the compiler to guess (or infer) the

type of an expression.

• It is not very powerful in Java but still useful for clarity.

HashMap<String, Address> directory = new HashMap<>();

229

Generic methods I

Challenge

Create a static method head which takes an ArrayList and returns

the first element.

Non-generic

public class ArrayListTools {

public static Object head(ArrayList data) {

return data.get(0);

}}

230

Generic methods I

Challenge

Create a static method head which takes an ArrayList and returns

the first element.

Non-generic

public class ArrayListTools {

public static Object head(ArrayList data) {

return data.get(0);

}}

230

Generic methods II

Is it working if we write the following?

ArrayList<String> names = new ArrayList<String>();

ArrayListTools.head(names);

• No! ArrayList<String> does not inherit from ArrayList<Object>.

• Invariant types: Inheritance is not propagated to type parameters, i.e.,

X<T> and X<U> are never subtypes of each other.

• Covariant types: This is not the case with array, i.e., String[] is a

subtype of Object[].

We should use a generic method:

Generic method

public class ArrayListTools {

public static <T> T head(ArrayList<T> data) {

return data.get(0);

}}

231

Generic methods II

Is it working if we write the following?

ArrayList<String> names = new ArrayList<String>();

ArrayListTools.head(names);

• No! ArrayList<String> does not inherit from ArrayList<Object>.

• Invariant types: Inheritance is not propagated to type parameters, i.e.,

X<T> and X<U> are never subtypes of each other.

• Covariant types: This is not the case with array, i.e., String[] is a

subtype of Object[].

We should use a generic method:

Generic method

public class ArrayListTools {

public static <T> T head(ArrayList<T> data) {

return data.get(0);

}}

231

Generic methods II

Is it working if we write the following?

ArrayList<String> names = new ArrayList<String>();

ArrayListTools.head(names);

• No! ArrayList<String> does not inherit from ArrayList<Object>.

• Invariant types: Inheritance is not propagated to type parameters, i.e.,

X<T> and X<U> are never subtypes of each other.

• Covariant types: This is not the case with array, i.e., String[] is a

subtype of Object[].

We should use a generic method:

Generic method

public class ArrayListTools {

public static <T> T head(ArrayList<T> data) {

return data.get(0);

}}

231

Bounded type parameters

When a class is instantiated with a generic type T, it has no information

on T, thus cannot call any method on this object.

We can bound the type.

class SortedArrayList<T extends Comparable> {

private T[] data;

// ...

data[i].compareTo(data[i+1]); // ok, T implements Comparable.

}

• Subtlety: We use extends even if Comparable is an interface.

• We can also give several type bounds: <T extends Comparable &

Cloneable>.

232

More on generics

• Lower and upper type bounds.

• Wildcard (<?>).

• . . .

More on the topic:

• Effective Java, Chapter 5.

• http://en.wikipedia.org/wiki/Generics_in_Java

• http://en.wikipedia.org/wiki/Wildcard_%28Java%29

• On a more general topic: http://en.wikipedia.org/wiki/

Covariance_and_contravariance_%28computer_science%29

• Another book: Java Generics and Collections, Maurice Naftalin and

Philip Wadler, O’reilly, 2006

233

http://en.wikipedia.org/wiki/Generics_in_Java
http://en.wikipedia.org/wiki/Wildcard_%28Java%29
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29

Chapter X. Design Pattern

233

Design pattern

• A design pattern is a reusable

general solution to a software

problem.

• A way to organise the code to

increase flexibility, reusability,

maintainability,

• Generally based on inheritance,

subtype polymorphism, and

interfaces.

234

Why are design patterns interesting?

• Introduce a common vocabulary among developers: make it easier

to understand the code.

• They are robust solutions, designed over the years by expert

developers.

• Extensible and modular: weak coupling between software

components.

235

Classification of design patterns

1. Creational patterns: to build an object when it is complicated

(e.g., to “help” the constructor).

• Factory, AbstractFactory, Builder, ...

• ASCIIBattlefieldBuilder builds Battlefield.

2. Structural patterns: to extend a class with functionalities without

modifying it.

• Adapter, Facade, Decorator, Proxy, Composite, ...

3. Behavioral patterns: to introspect an object and/or customized its

behavior.

• Iterator, Observer, Strategy, Visitor, ...

• TileVisitor allows us to visit the tiles of the battlefield.

236

A selection of design patterns

We discuss five design patterns:

1. Builder pattern: used in LOL 2D.

2. Composite pattern: used in Calculator and MC (lab 4).

3. Facade pattern: used in LOL 2D.

4. Visitor pattern: used in LOL 2D.

5. Observer pattern: should be used in LOL 2D.

237

Builder Design Pattern

237

Builder Pattern: Intent

Separate the construction of a complex object from its represen-

tation so that the same construction process can create different

representations.

238

Motivation: Maze Builder

239

General case: Builder design pattern

240

A restricted usage in LOL 2D

• Constructing the battlefield with an ASCII file is 100 LOC.

• Usage of the builder to separate object construction from the object

itself.

• Currently, no need for a Builder interface.

• Could be added later when required, e.g., suppose you want to

propose a map editor.

241

Composite Design Pattern

241

Intent

Compose objects into tree structures to represent part-whole hier-

archies. Composite lets clients treat individual objects and com-

positions of objects uniformly.

242

Motivation: Calculator

A constant or a composition of constants through Addition are

manipulated uniformly through Expression.

243

Motivation: Musical score

A note or a composition of notes through Chord are manipulated

uniformly through Sound.

244

General case: Composite design pattern

245

Facade Design Pattern

245

Intent

Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem

easier to use.

246

Motivation: AI interface

• Each client can implement its own AI, which might be super

sophisticated and involves many components.

• All AIs are used in Client the same way, through the facade AIBase

interface.
247

Visitor Design Pattern

247

Intent

Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without

changing the classes of the elements on which it operates.

It is a solution to the Expression problem mentioned in Live coding 4.

248

Motivation: Action on battlefield

• An action has an effect on the battlefield (e.g., moving a champion,

attacking a destructible, ...).

• The class Turn has an ArrayList<Action>.

• How to iterate over the list of actions, and know the concrete

subtype?

• The visitor pattern allows us to introspect the actions.

249

Motivation: Tiles of the battlefield

• The battlefield is constituted of different kind of tiles, either ground

or destructible.

• The visitor allows us to introspect a destructible tile.

250

General case: Visitor design pattern

251

Observer Design Pattern

251

Intent

Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and up-

dated automatically.

252

Motivation: Server / UI communication

Currently, the server directly communicates to the UI.

253

Motivation: Server / UI observer

Observer pattern in Java

In Java, the interface Observer and the class Observable (Subject in

the example) are already provided!

254

General case: Observer design pattern

255

Chapter XI. Modern Java Concepts

255

A Tour of Modern Java Concepts

Programming languages are not static entities, but evolve over the years by

incorporating new concepts:

• Java 8: lambda expressions, unsigned integer arithmetic, ...

• Java 9: modules, ...

• Java 10: local-variable type inference:

var list = new ArrayList<String>();

// equivalent to

ArrayList<String> list = new ArrayList<String>();

• Java 14: switch expressions

static void howMany(int k) {

System.out.println(

switch (k) {

case 1 -> "one";

case 2 -> "two";

default -> "many";

}

);

256

A Tour of Modern Java Concepts

• Java 15: text block, new garbage collectors, ...

• Java 16: pattern matching for instanceof, records:

record PokemonCard(String name, String description, int hp, int level) {}

PokemonCard c = new PokemonCard("Pikachu", "Great Pokemon", 100, 1);

System.out.println(c.name()); // accessors automatically generated.

PokemonCard c2 = ...;

if(c.equals(c2)) { ... } // equals automatically generated.

The constructors, accessors, methods equals, hashCode, toString, ...

are automatically generated.

Limitation

Records should solely be used when we need to store “data” and no

interesting treatment is performed on those. They are immutable and

cannot inherit from classes or implement interfaces.

257

A Tour of Modern Java Concepts

We explain in more depth two advanced concepts of Java:

• Nested classes

• Lambda expressions

258

Nested classes

258

Nested classes

For now, we have only used classes declared at “top-level”.

A class can also be declared inside other Java entities:

• Inner class: a class within a class with access to the containing

class’s fields and methods.

• Static nested class: a class within a class without access to the

containing class’s non-static fields and methods.

• Local class: a class declared within a method.

• Anonymous class: a class without a name.

See also Effective Java. Item 24: Favor static member classes over

nonstatic.

259

Inner class

public class Arena {

private ArrayList<Team> teams;

private Battlefield battlefield;

private class ApplyAction implements ActionVisitor {

ArrayList<Integer> championsWhoActed;

public void visitSpawn(int teamID, int championID, int x, int y) {

teams.get(teamID).spawnChampion(championID, x, y));

}

...

}

}

• ApplyAction has access to all private fields of Arena.

• ApplyAction can be used like a normal class inside Arena.

• As ApplyAction is private, it is not visible outside of Arena.

• Arena cannot access the private members of ApplyAction.

260

Inner class

How does it work?

An instance of an inner class has a hidden field containing the reference

of an instance of the containing class.

public class Arena {

private class ApplyAction implements ActionVisitor {

Arena arena;

public ApplyAction(Arena arena) {

this.arena = arena;

}

public void visitSpawn(int teamID, int championID, int x, int y) {

arena.teams.get(teamID).spawnChampion(championID, x, y));

}

...

}

Therefore, you can only instantiate an inner class in the context of its

containing class.

261

Static nested class

public class Battlefield {

public static enum GroundTile {

GRASS,

ROCK;

// ...

}

}

• Very similar to a class declared “normally”, but in addition can

access private static members of the containing class.

• It is a way to indicate a class is very dependent w.r.t. another one.

• Here GroundTile existence depends on Battlefield.

• However, it is often better to use package to group classes together,

so static nested classes have a limited usage.

262

Local class

Perhaps surprisingly, you can declare a class almost anywhere a local

variable can be declared:

public class NumberValidator {

public static void validatePhoneNumber(String phoneNumber) {

class PhoneNumber {

String formattedPhoneNumber;

PhoneNumber(String phoneNumber){...}

public String getNumber() {

return formattedPhoneNumber;

}

}

PhoneNumber myNumber1 = new PhoneNumber(phoneNumber);

if (myNumber1.getNumber() == null) { ... }

..

}

}

This kind of nested class is not very useful and used.

263

Anonymous class

The last kind of nested class, anonymous class, is very common.

public class Arena {

// ...

@Override public String toString() {

StringBuilder map = new StringBuilder();

visitFullMap(new TileVisitor() {

@Override public void visitGround(GroundTile groundTile, int x, int y) {

map.append(GroundTile.stringOf(groundTile));

newline(x);

}

@Override public void visitChampion(Champion c) {

map.append(’C’);

newline(c.x());

}

// ...

});

return map.toString();

}

264

Anonymous class

• It is similar to a local class, but without a name.

• Can access and modify local objects (e.g., map in the previous

example).

• Useful when a class is local to a method, only need to be instantiated

in one place, and is not reusable outside of the current context.

Limitations

• Cannot implement multiple interfaces.

• Cannot be used inside expression relying on type name such as

instanceof.

• Clients of anonymous class can only call the methods of the super

types (which can be overridden by the anonymous class).

265

Nested classes: rules of thumb

• Should be kept short.

• Use static nested classes if you don’t need a reference to an object

of the containing class.

• Use lambda expressions instead of anonymous classes when it is

possible.

266

Lambda Expressions

266

Lambda expressions

Lambda expressions are inspired by the functional programming

paradigm (that you will learn in PF3).

Functional programming

• Immutable memory.

• First-order functions: we can pass functions to functions as

arguments, and functions can be returned too!

Lambda expressions are first-order functions over mutable memory.

The following slides are based on Effective Java. Chapter 7: Lambdas

and Streams and https://docs.oracle.com/javase/tutorial/

java/javaOO/lambdaexpressions.html.

267

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Motivation

We take the example of Pokedeck (lab 2), where we have a collection of cards that we must

search. We can search a card by ID, by name, by card type:

public class Deck {

private ArrayList<Card> deck;

// ...

public ArrayList<Card> getCardsByName(String name) {

ArrayList<Card> searchResults = new ArrayList<Card>();

for (Card card : deck) {

if(name.equals(card.getName())) {

searchResults.add(card);

}

}

return searchResults;

}

public ArrayList<Card> getCardsById(String id) {

ArrayList<Card> searchResults = new ArrayList<Card>();

for (Card card : deck) {

if(id.equals(card.getId())) {

searchResults.add(card);

}

}

return searchResults;

}

public ArrayList<Card> getCardsByCardType(CardType cardType) {...}
268

Motivation

• We can observe a recurring pattern.

• All these methods look the same: don’t repeat yourself (DRY)

principle!

Two solutions

1. The old one with interfaces and anonymous classes.

2. The new and cool one with lambda expressions.

269

Solution 1: Interface and anonymous class

First, we create a DeckFilter interface:

interface DeckFilter {

boolean keepCard(Card c);

}

We can then code a generic search method using this filter:

public ArrayList<Card> search(DeckFilter filter) {

ArrayList<Card> searchResults = new ArrayList<Card>();

for (Card card : deck) {

if(filter.keepCard(card)) {

searchResults.add(card);

}

}

return searchResults;

}

270

Solution 1: Interface and anonymous class

The user of the class Deck can choose its own search criterion:

Deck deck = ...;

deck.search(new DeckFilter() {

@Override boolean keepCard(Card card) {

return name.equals(card.getName());

}

})

As a bonus, we also made the class more respectful of the open-closed

principle!

271

Solution 1: Interface and anonymous class

Note that we can provide a number of default filters:

public class DeckSearch {

public static class FilterByName implements DeckFilter {

private String name;

public FilterByName(String name) {

this.name = name;

}

@Override boolean keepCard(Card card) {

return name.equals(card.getName());

}

}

public static class FilterByID implements DeckFilter { ... }

}

That can be used in client code:

Deck deck = ...;

deck.search(new DeckSearch.FilterByName(name));

272

Drawbacks of solution 1

• It introduces a lot of “boilerplate code”: interfaces, static nested

classes.

• And it is not always very readable: anonymous classes.

Lambda expressions provide a more satisfying way to solve this problem.

273

Solution 2: using lambda expressions

The interface DeckFilter is what is called a functional interface

because it has only one abstract method:

@FunctionalInterface interface DeckFilter {

boolean keepCard(Card c);

}

As a syntactic shortcut, we can use lambda expressions to implement this

interface:

Deck deck = ...;

deck.search(card -> name.equals(card.getName()));

The code card -> name.equals(card.getName()) is a lambda

expression.

274

Lambda expressions

Another example: sorting a list of strings by length:

Collections.sort(words,

(s1, s2) -> Integer.compare(s1.length(), s2.length()));

• We declare a function taking two arguments s1 and s2.

• Implicit return keyword.

• All types are automatically inferred by the compiler.

Syntax of lambda expressions

(arg1, arg2, ...) -> A Java expression

(arg1, arg2, ...) -> {

One or more statements (possibly ending with a return statement)

}

275

Improving solution 2 using streams

Streams encapsulate a number of generic and common operations on list:

filter, map, reduce, sorted, ...

Lambda expressions really shine in cooperation with streams:

public List<Card> search(DeckFilter filter) {

return deck.stream()

.filter(filter)

.collect(Collectors.toList());

}

We create a stream, filter on this stream and then collect the result.

Compare with the previous solution: it is much shorter.

276

Improving (again) solution 2 using standard functional interface

The interface DeckFilter contains a single filtering method which is

actually quite common. Java defines a number of standard interface so

we do not need to redefine ours:

public List<Card> search(Predicate<Card> keepCard) {

return deck.stream()

.filter(keepCard)

.collect(Collectors.toList());

}

Predicate<Card> contains a generic method boolean test(T t).

The call to search stays the same, as the lambda expression

automatically implements Predicate<Card>:

deck.search(card -> name.equals(card.getName()));

277

Standard functional interface

Functional interfaces already present in java.util.function:

Interface Function Signature Example

UnaryOperator<T> T apply(T t) String::toLowerCase

BinaryOperator<T> T apply(T t1, T t2) BigInteger::add

Predicate<T> boolean test(T t) Collection::isEmpty

Function<T,R> R apply(T t) Arrays::asList

Supplier<T> T get() Instant::now

Consumer<T> void accept(T t) System.out::println

278

Method references

A (static) method can also be used where a lambda expression is expected:

Method Ref Type Example Lambda Equivalent

Static Integer::parseInt str -> Integer.parseInt(str)

Bound Instant.now()::isAfter Instant then = Instant.now();

t -> then.isAfter(t)

Unbound String::toLowerCase str -> str.toLowerCase()

Class Constructor TreeMap<K,V>::new () -> new TreeMap<K,V>

Array Constructor int[]::new len -> new int[len]

Summary
Method references often provide a more succinct alternative to lambdas.

Where method references are shorter and clearer, use them; where they

aren’t, stick with lambdas.

279

A more complete example using lambda and streams

Here a function retrieving the sorted list of ID of all cards fulfilling a

criterion:

public List<Integer> filteredSortedID(Predicate<Card> keepCard) {

return deck.stream()

.filter(keepCard)

.map(Card::getID)

.sorted()

.collect(Collectors.toList());

}

• Fluent interface: we can chain the operations.

• Lazily evaluated : the whole thing is only evaluated when we arrive

on collect. It means the collection is not traversed more than once

in case of multiple map/filter operations!

280

Chapter XII. Network Programming in Java

280

Introduction

Today, we learn about networking in Java by implementing a chatting

app!

Implementing Discord: step by step

1. Discord V1: 1 client and 1 server (echo server).

2. Discord V2: n clients and 1 server, but the clients cannot see the

messages of others.

3. Discord V3: n clients and 1 server, the messages are broadcasted,

and the server can be shutdown.

Please clone the following repository:

https://github.com/ptal/chatroom

281

https://github.com/ptal/chatroom

Discord V1: 1 server - 1 client

281

Networking in a nutshell

• Each machine is identified by an IP address.

• To communicate with a machine, we open a communication channel

on a particular port (e.g., 80 for http).

• Ports numbered from 0 to 1023 are reserved for common protocols

(http, dns, echo, ...).

282

Client-server model

• A server listens the request of the clients on a particular port.

• A client connects to the server with the coordinate (ip, port).

• The server can act as an intermediate among clients (e.g., chatting

app).

• It is a centralized model because the server is at the center and all

communications go through the server.

• When the server is dead, nobody can communicate anymore (in

contrast to peer-to-peer network).

283

Client-server communication scenario

284

Client-server in Java

Implement this scenario in Server.java and Client.java

285

Networking Protocol

285

Protocol

286

What is a protocol

• A protocol specifies how the server and clients communicate.

• Basically, who send what at what time.

• If the protocol is well-documented, we can implement a client

without looking at the code of the server.

Example

1. The client sends a pseudo and a password

2. The server verifies if it is correct and send ok if it is, and ko

otherwise.

3. The client go to step (1) if it receieves ko. Otherwise, it continues

by asking profile information.

4. The server send the information.

5. . . .

287

Protocol format

• Two families

1. Binary: Data is structured and interpreted following the size in bytes

of the different fields.

2. Text: Data is an array of characters, possibly describing a high-level

format (e.g., XML, JSON).

288

Binary format procotol

For instance, network protocols are specified in a binary format.

Image from http://iacs.seas.harvard.edu/courses/ac263/course/protocols.html

289

http://iacs.seas.harvard.edu/courses/ac263/course/protocols.html

Binary format procotol

• Advantage of binary format is that the size of a network packet is

minimized.

• However, packet are not easily readable, harder to implement and

not adequate for interoperability.

• Normally, only use binary format if the text format was shown

to be too slow.

• An exception: serialization...

290

A useful binary protocol: Serialization

Serialization is the process of turning a data structure, in our case a Java

object, into a sequence of bytes. The sequence of bytes can be written in

a file or transmitted over the network.

• (+) Completely automatic and transparent for us.

• (+) Very easy to use (implements Serializable in Java).

• (-) Not interoperable: only for the communication between 2 Java

programs.

291

Example from game/action/Turn.java in LOL2D

public class Turn implements Serializable {

public void send(Socket socket) throws IOException {

OutputStream outputStream = socket.getOutputStream();

ObjectOutputStream objectOutputStream = new ObjectOutputStream(outputStream);

objectOutputStream.writeObject(this);

}

@SuppressWarnings("unchecked")

public static Turn receive(Socket socket) throws IOException {

InputStream inputStream = socket.getInputStream();

ObjectInputStream objectInputStream = new ObjectInputStream(inputStream);

Object rawTurn = null;

try { rawTurn = objectInputStream.readObject(); } catch(Exception e) {}

if(!(rawTurn instanceof Turn)) {

throw new BadProtocolException("turn of type ‘Turn‘.");

}

return (Turn) rawTurn;

}

}

292

Text-based protocol

Example from the add-ons server of the game Battle for Wesnoth (

http://hyc.io/wesnoth/umcd.pdf).

Request to delete an add-on

• Format:

[request_umc_delete]

id = ID

password = PASSWORD

[/request_umc_delete]

• Fields description:

ID The ID of the UMC we want to delete.

PASSWORD The password of the UMC.

293

http://hyc.io/wesnoth/umcd.pdf

Text-based protocol

Reply from the server

• An error packet can be sent for the common reasons (see 2.4.2) but

also because:

1. The password is wrong.

• In case of success, a packet with no field is sent.

[request_umc_delete]

[/request_umc_delete]

294

Optional exercise: JSON protocol

• Encapsulate a message in a JSON packet.

• For this purpose, specify a very simple protocol.

Exemple

{

name: "request_umc_delete",

id: 132,

password: "UTE6542162143ECUSACE"

}

Example of JSON specification: https:

//github.com/ptal/online-broker/wiki/Online-broker-API

295

https://github.com/ptal/online-broker/wiki/Online-broker-API
https://github.com/ptal/online-broker/wiki/Online-broker-API

JSON Library

Maven dependency (to add in pom.xml)

<dependency>

<groupId>org.json</groupId>

<artifactId>json</artifactId>

<version>20141113</version>

</dependency>

Example

import org.json.simple.JSONObject;

//...

JSONObject obj = new JSONObject();

obj.put("name","request_umc_delete");

obj.put("id", new Integer(132));

obj.put("password", "UTE6542162143ECUSACE");

StringWriter out = new StringWriter();

obj.writeJSONString(out);

String jsonText = out.toString();

JSONObject sameObj = new JSONObject(jsonText);

296

Discord V2: 1 server - n isolated clients

296

Multi-clients server

Challenge

• How can a server manages several clients simultaneously?

• We would like to perform several concurrent actions:

1. Accept new clients.

2. Wait messages from clients already connected.

• The problem is that these two actions are blocking, we can do one

or the other.

297

Solution 1: two steps protocol

• The easiest solution is to wait for a number of clients and then start

the discussion.

• Each client talks one after the other.

• This is what happens in LOL 2D.

• But not very useful for a chatroom...

298

Solution 2: N+1 programs

The intuition is to have:

• 1 program accepting new clients.

• N programs communicating with the N clients connected.

Generating so many programs is heavy for the systems and consume a lot

of resources. A solution is to use threads.

299

Threads

There exists two ways to create threads in Java: inherting from Thread

or implementing the interface Runnable.

class Connection extends Thread {

Socket socket;

Connection(Socket socket) {

this.socket = socket;

}

public void run() {

// code communicating with the client

...

socket.close();

}

}

...

Connection connection = new Connection(socket);

connection.start();

300

Runnable

If your class need to inherit from something else, you can use the

interface Runnable:

class Connection implements Runnable {

Socket socket;

Connection(Socket socket) {

this.socket = socket;

}

public void run() {

// code communicating with the client

...

socket.close();

}

}

301

Exercise: Discord V2

Create an instance of the Connection class each time the server receives

a new request:

while(true) {

Socket socket = server.accept();

System.out.println("New client at " + socket);

new Connection(socket).start();

}

302

Discord V3: 1 server - n clients (+ clean

shutdown of the server)

302

Clean shutdown of the server

To stop the server, you must signal to all running threads that you want to

stop.

class Connection extends Thread {
...

public void interrupt () {
super. interrupt ();

try {
socket . close ();

} catch (IOException e) {} // quietly close

}
public void run() {

try {
...

}
catch (InterruptedIOException e) {

Thread.currentThread(). interrupt ();

}
catch (IOException e) {
}
socket . close ();

}
}
...

Connection connection = new Connection(socket);

...

connection. interrupt ();

303

Clean shutdown of the server

• To stop all connections, you must first register those in an array.

• Then, the method join of a thread allows us to wait for the end of

the thread execution.

ArrayList<Connection> connections = new ArrayList<Connection>();

...

for(Connection c : connections) {

c.interrupt();

}

for(Connection c : connections) {

c.join();

}

304

Discord V3: Chat room

• Each time the server receives a message, it is broadcasted to all

connected clients.

• We keep all the connections in the Server class.

• Each time a client is accepted, it is added in the list room, and when

it quits, it is removed.

class Server {

ArrayList<Connection> room;

...

public void broadcast_msg(String msg) {

for(Connection c : connections) {

c.send(msg);

}

}

}

305

Two threads for the client

Since the client can send and receive messages, we need one thread for

each:

class Client implements Runnable {

MessageReader msgReader;

public Client(...) {

msgReader = new MessageReader(in);

msgReader.start();

}

public void run() {

while ((userInput = stdin.nextLine()) != null) {

out.println(userInput);

}

}

}

Improve this code so the program exits when the user types ”\quit”.

306

Two threads for the client

Since the client can send and receive messages, we need one thread for

each:

class Client implements Runnable {

MessageReader msgReader;

public Client(...) {

msgReader = new MessageReader(in);

msgReader.start();

}

public void run() {

while ((userInput = stdin.nextLine()) != null) {

out.println(userInput);

}

}

}

Improve this code so the program exits when the user types ”\quit”.

306

Quick Notes on Multithreading

306

Race conditions

• To communicate, threads share memory (e.g., they share an object).

• This communication model, called shared memory multithreading is

very hard to use right.

• Indeed, two threads can write in the same variable at the same time.

Example

Let x , y be shared and initialized to 0.

Thread 1 Thread 2

x = 1 y = 1

r1 = y r2 = x

What are the possible results?

Everything is possible: r1=1,r2=1 or r1=1,r2=0 or r1=0,r2=1 but

also r1=0,r2=0.

307

Race conditions

• To communicate, threads share memory (e.g., they share an object).

• This communication model, called shared memory multithreading is

very hard to use right.

• Indeed, two threads can write in the same variable at the same time.

Example

Let x , y be shared and initialized to 0.

Thread 1 Thread 2

x = 1 y = 1

r1 = y r2 = x

What are the possible results?

Everything is possible: r1=1,r2=1 or r1=1,r2=0 or r1=0,r2=1 but

also r1=0,r2=0.

307

Synchronized

A race condition occurs when two threads write on the same variable.

How to retreive some sequentiality and force the threads to write one at

a time?
public class SafeInteger {

private int x = 0;

public synchronized void increment() {

x = x + 1;

}

}

The keyword synchronized guarantees that only one thread can only

enter a method at a time.

308

Back to the server

• We must carefully add synchronized at the right places.

• What are the resources shared by the different threads?

• Mainly the list of connections and during the broadcast.

• Moreover, we do not want to keep the arrival order of the messages

of the clients.

Exercise: improve the server to erase a client from the connections list

when it disconnects or sends ”\quit”.

309

Concurrency vs Parallelism

From http://docs.oracle.com/cd/E19455-01/806-5257/

6je9h032b/index.html:

• Parallelism: A condition that arises when at least two threads are

executing simultaneously.

• Concurrency : A condition that exists when at least two threads are

making progress. A more generalized form of parallelism that can

include time-slicing as a form of virtual parallelism.

310

http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h032b/index.html

Conclusion

Multithreading is hard and generally unsafe, avoid

to use it as much as you can.

We will discuss about various parallel programming models in PF3.

See also The problem with threads, Lee Edward, 2006

311

	Ad-hoc polymorphism (overloading)

